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Reminder: Anatomy
of motor control &
pattern generators




=PFL  Vertebrate motor control

a The motor infrastructure
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Fine motor control
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Eye movements

Grillner, Nature Review Neuroscience 2003
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b The vertebrate control scheme for locomotion
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Pattern generationin the intact
lamprey and an isolated spinal circuit

Intact lamprey — locomotion

Note: alternation of 1/3 and 2/4 plus lag between 1 and 2.

Grillner, Nature Review Neuroscience 2003



=L Pattern generation in the intact
lamprey and an isolated spinal circuit

Intact lamprey — locomotion Isolated spinal cord — fictive locomotion

0.5s

superfusion of glutamate agonists
Grillner, Nature Review Neuroscience 2003



=PFL  Brain stem circuits to control locomotion

b The vertebrate control scheme for locomotion
Selection Initiation Pattern generation
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ePFL  Brain stem circuits to control reaching & handling
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Cerebral cortex
Fine motor control
(speech, hand/finger
coordination)

Cerebellum

Hypothalamus
Feeding
Drinking

Brainstem
Respiration
Chewing
Swallowing

Eye movements

How are the many

degrees of
freedom tamed?
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How many muscle
states are there?

9600

(for 600 muscles assuming q states per muscle)
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Similarly, there are
many kinematic
states



=L Boading balls: an example skill

Source: reddit



PFL. - How do humans control the hand?

PC 1 PC 2
0.2

VA

Human
Classic result: Bernstein, Bizzi, D’Avella, ... 0.0 - ; '
Todorov, & Ghahramani O 5 1 O 1 5

Annual International Conference of the IEEE Engineering in Medicine and Biology 2004 N u m be r Of PCS



Symphony
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Muscle

synergies as
principle for
motor
control
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Integration of
feedback?

From (open-loop) pattern
generation to control theory

Note: Feedback is also present in
spinal cord/brain stem examples!




:=. MyoChallenge: Baoding Balls

Inaugural NeurlPS Challenge 2022
[T

Caggiano et al. Proceedings of the NeurlPS 2022 Competitions Track, PMLR 220:233-250
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SCIENCE ROBOTICS | RESEARCH ARTICLE

ANIMAL ROBOTS

Learning quadrupedal locomotion over
challenging terrain

Joonho Lee'*, Jemin Hwangbo'?, Lorenz Wellhausen', Vladlen Koltun®, Marco Hutter’

Recent Successesin
Reinforcement
Learning (RL)



=F7LReinforcement learning is a natural framework for skill leaming

state reward

action
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- :
I ‘EL; Environment ]4

J(0) = vy, (so) = E [Z VER:| So = So]
t=0

Sutton & Barto, http:/incompleteideas.net/book/RLbook2020.pdf



:=. MyoChallenge: Baoding Balls

Inaugural NeurlPS Challenge 2022

| 'l

g"39

Phase 1 Phase 2

- SOTA RL:

Caggiano et al. Proceedings of the NeurlPS 2022 Competitions Track, PMLR 220:233-250 41% 0%
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Better exploration?
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=L | earning sensorimotor skills
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Chiappa, Marin Vargas, Huang, Mathis, NeurlPS 2023



mrpre

7L Basic intuition for better exploration
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7L Latent time-correlated exploration

LATTICE - LATent TiIme-Correlated Exploration

Latent noise Perturbation matrices
x / Na| Pa | (Pa)ij ~N(0,(Sa)iy )
W N,

Nel Pe | (Px)ij ~N(0,(S%)ij)

State-Dependent Exploration

gSDE  a = (W + P,)x

Default a = Wx + ¢

Time + Action

Chiap;a, Marin Vargas, Huang, Mathis, NeurlPS 2023



7L Benchmarking learning to locomote
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un speed = 1,000 x real time  [S]lower, [Flaster * HE e
Ren[d]er every frame On . .
Switchiea et Y 6) [Tab] (camera ID = -1) :‘T
[C]ont On / \

efere e] frames On /

off f 78

On / " Al i:f."c{f AN ’l \,ﬂ‘
[Spags] ’ j rrdr g f ) g P

/ : ) ; Es
ep [right arrow] ' 7 ¥ ' =

i
7
39D action S'gq/ace
i // T

114} /

390
1}

Reorient task t _~'! p 0.00200

; //’ In MyoSuite/Mujoco N



[S]lower, [Flaster

On

[Tab] (camera ID = -1)
On \'%
On i
Off ™
On / 'y AL |5 ,‘T~
[Space] / N it - A (
) [right arrow] X

0-4

530
0.00200

'Reorient task mesten
In MyoSuite/Mujoco _substeps 1




[Run speed = 1,000 x real time  [S]lower, [Flaster

Ren[d]er eyery frame On

Switch camera (#cams = 6) [Tab] (camera ID = -1)

[Clontact forces On \ M S 2
Referenc[elirames On yo u lte
T[r]lanspare Off

Display o]y}

Stop [Space]

Advance simulation by one step [right arrow]

e Menu
S Late Lattice
e training performance

Toggle geomgroup Visibility 0-4

=

Step 235
timestep 0.00200
n_substeps 1

¥

FPS

Solver iterations




cPFL

0.6
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Lattice learns more energy efficient
solutions
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=prL. Can we model complex behavior using high-
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dimensional musculoskeletal body?

MyoChallenge'23

Towards Human-Level Dexterity and Agility

Phase 2
Rank | Team Score Effort
1 Lattice 0.34343 | 0.05220
2 GaitNet 0.30303 | 0.05506
3 CarbonSiliconAl | 0.20202 | 0.07620
o NUABILITY 0.14141 | 0.07492
5 NUR-TEAM 0.10101 | 0.04470

Winning solution — Lattice Team:

A. Marin Vargas

e Best score

* Best energy efficiency

Chiappa A. S., Marin Vargas A., Huang A., & Mathis A., NeurlPS (2023)

Caggiano V., Durandau G., Wang C., Kwang Tan C., Schumacher P., Wang H., Chiappa A., Marin Vargas A., Mathis
A., Park J., Won J., Park G., ShinB., Kim M., Koo S., Yang Z., Dang W., Cai H., Song J., Song S., Sartori M., Kumar
V., ArXiv (2024)



=PFL  Despite Lattice, the performanceis not so

hlgh.l.
How can one reach a higher fraction?
m==== PPQ === gSDE-PPO T=4 == lattice-PPOT=1 == Lattice-PPOT=4
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/S/@ Final solution

Track local minima

Easy to find minimum

Wang, Chen, Zhu IEEE TPAMI, 2021



=L Curriculum learning in biology
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=rr. INspiration from coaching: part-to-
whole practice

States of a dynamic skill

dpi .
k22248 Ny

Leaming static movement matifs first

Recommended - =
strategy: v
‘ é

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024



=L Curriculum learning

=  Static to Dynamic Stability (SDS)

*  SDS creates stability at desired states before
learning a policy that reaches them

* A curriculum gradually transforms static stability into
dynamic movement motifs

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024
= Caggiano et al. Proceedings of the NeurlPS 2022 Competitions Track, PMLR 220:233-250
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=rrL  Learning curve for our policy

Sport science terminology: Part to whole practice Deliberate practice
ML terminology: Statch Dynamic ‘andom target |n|t|aI|zat|cinL Domain randomization
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Curriculum  Phasel Phase 2
None 41% 0%
Location only 42% 4%
Speed only 45% 0%
SDS (ours) 100% 55%

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024

Team Performance
SDS (ours) 55%
AldMuscles 41%
IARAI-JKU 15%
pkumarl 14%

Caggiano et al. Proceedings of the NeurlPS 2022 Competitions Track, PMLR 220:233-250



=P*L. How do humans achieve this task?

O 2
0.17

PC 1 PC 2
0.0~

m Todorov, & Ghahramani, 0 5 1 O 1 5

Annual International Conference of the IEEE Engineering in Medicine and Biology 2004 N u m be r Of PCS
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- SDS also discovers a low-dimensional

control space
Joint angles
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Control 8 7 S 00
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0 5 10 15
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This notion of muscle/kinematic synergy is
purely based on reconstruction error!



=PFL  Physics engine allows causal

experiments with “muscle synergies”
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Signal reconstruction underestimates
necessary DoF
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err. Control spaces are highly task-dependent
& transfer poorly

0.7 A 4
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=PFL  |ntermediate take-home
messages

\/
o Muscle synergies have been proposed as a key / "

;

principle for motor control

o Yet, low-dimensional nature might be
underestimated with existing techniques! “

o For the hand -- learned muscle synergies are ‘
highly task-specific, and thus generalize poorly

o This suggests that low-dimensional control is an
emergent property (of the
task/biomechanics/distributed circuits) rather than
the mechanism of control (not a simplifying
strategy)

o Neural networks are ideal for taming complex
biomechanics

sy

ISR




cPFL

Curriculum
learning in human
motor control?

Part-to-whole practice, deliberate
practice & challenge point
learning




® Video suggested by Prof. Nicola Hodges



ePFL - Challenge point: a framework for
conceptualizing the effects of various
practice conditions in motor learning

ocP
(Expert)

Functional Task Difficulty

FIGURE 4. The relation between learning curves, performance curves, and the optimal chal-
lenge point (OCP) related to 2 performers of different skill levels.




=PFL - Deliberate practice

Naive practice
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Trends in Cognitive Sciences

Du, Krakauer, Haith Trends in Cog Sci 2022



=L Deliberate practice &
the SDS learning curve

Static Dynamic Phase shift Fine tuning
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Du, Krakauer, Haith Trends in Cog Sci 2022



Nath*, Mathis* et al.
Nature Protocols 2019

=L Reinforcement learning

Chess: 10120

action a;

M. Mathis Lab

agent environment

state s;
reward r;

enormous gap

https://www.forbes.com/
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- What is missing?

Internal models

Inductive biases (innate architecture)

Better exploration

Baked in reward functions (which we don’t know...)
Using language

Curriculum learning

Deliberate practice

While we do not know their contributions or even the necessity of either one of
those claims, | will show preliminary evidence for each to give you an idea.

There is a lot of research to be done to close this gap & figure out what actually
matters...
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Richard Sutton

“The bitter lesson is based on the historical observations that 1) Al
researchers have often tried to build knowledge into their agents, 2) this
always helps in the short term, and is personally satisfying to the
researcher, but 3) in the long run it plateaus and even inhibits further
progress, and 4) breakthrough progress eventually arrives by an
opposing approach based on scaling computation by search and
learning. The eventual success is tinged with bitterness, and often incompletely
digested, because it is success over a favored, human-centric approach.”

http://www.incompleteideas.net/Incldeas/BitterLesson.html
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