

NX-435: Systems neuroscience

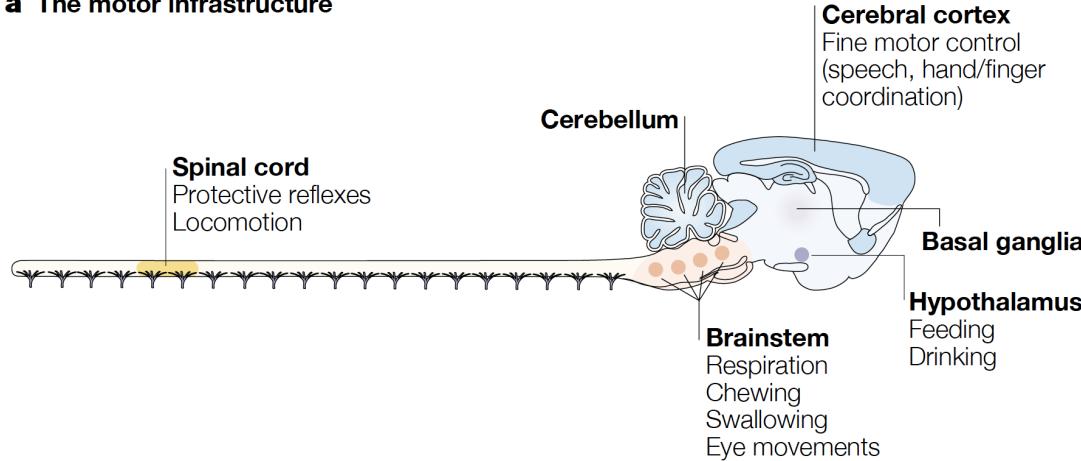
Alexander Mathis
alexander.mathis@epfl.ch

Guest lecture, May 15th

Reminder: Anatomy of motor control & pattern generators

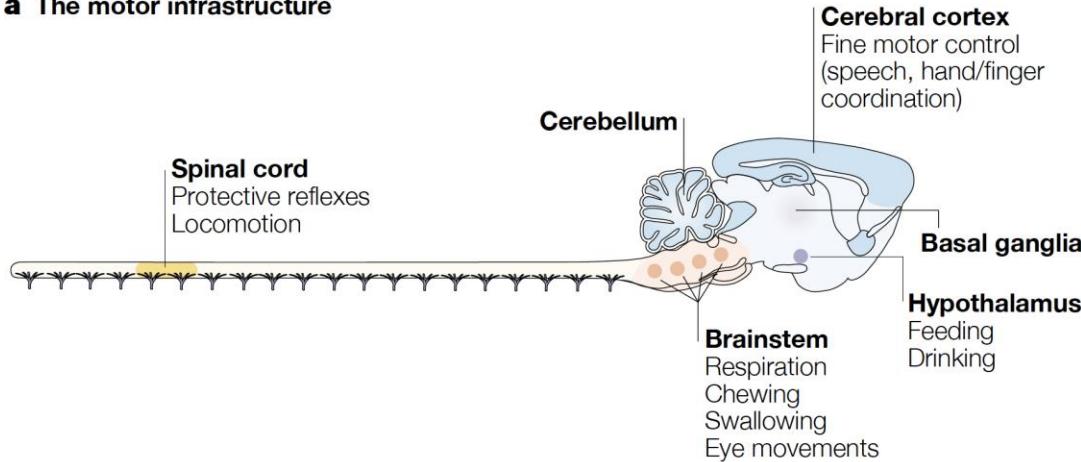
Vertebrate motor control

a The motor infrastructure

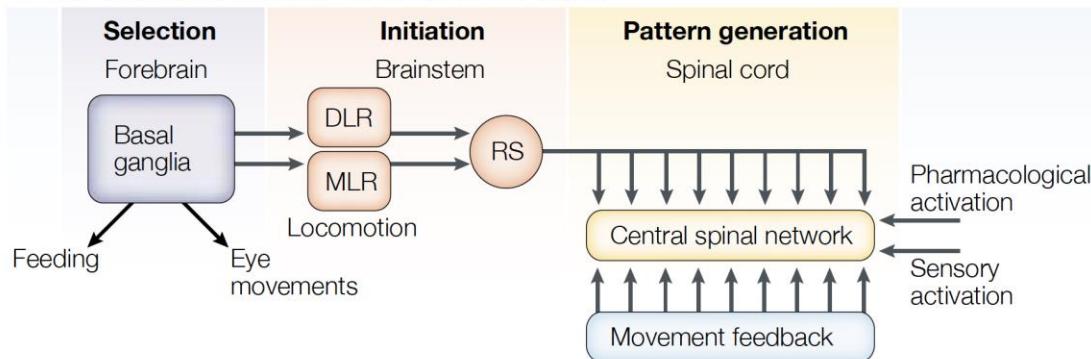


Vertebrate motor control

a The motor infrastructure

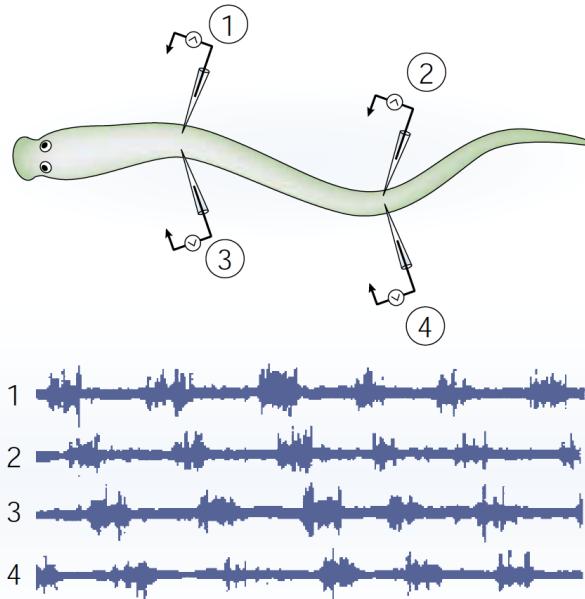


b The vertebrate control scheme for locomotion



Pattern generation in the intact lamprey and an isolated spinal circuit

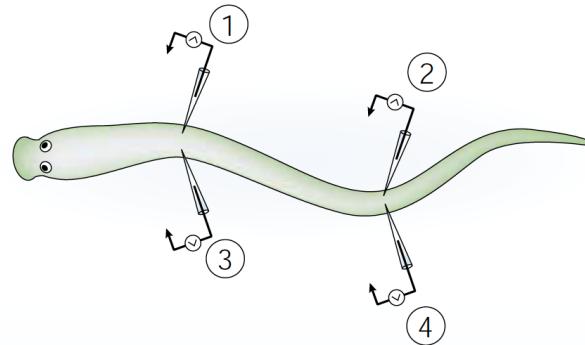
Intact lamprey – locomotion



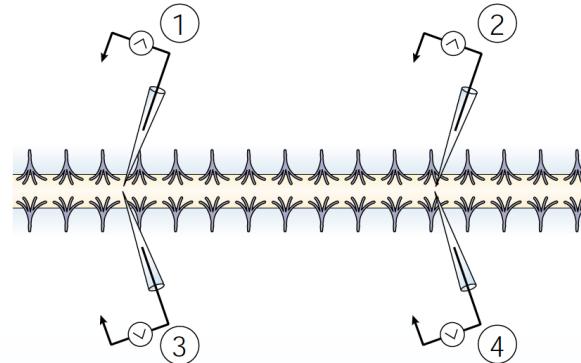
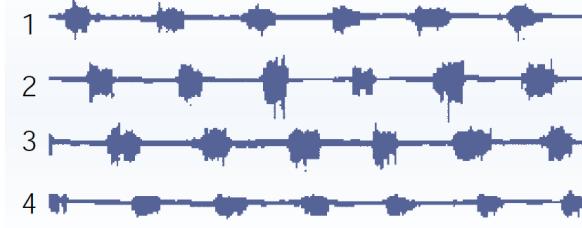
Note: alternation of 1/3 and 2/4 plus lag between 1 and 2.

Pattern generation in the intact lamprey and an isolated spinal circuit

Intact lamprey – locomotion



Isolated spinal cord – fictive locomotion



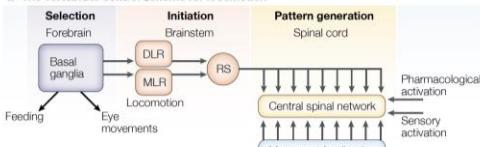
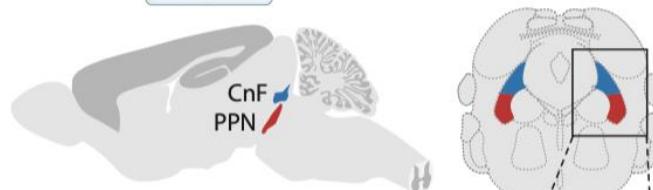
0.5 s

superfusion of glutamate agonists

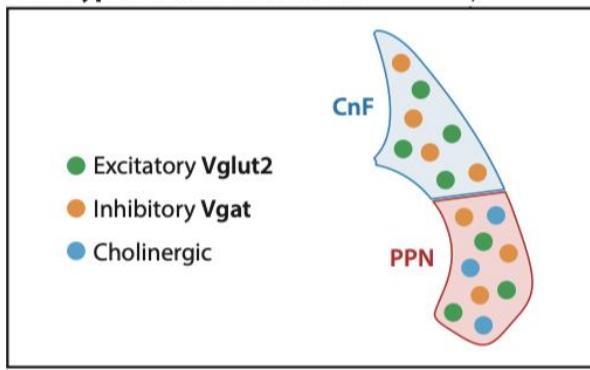
Grillner, Nature Review Neuroscience 2003

Brain stem circuits to control locomotion

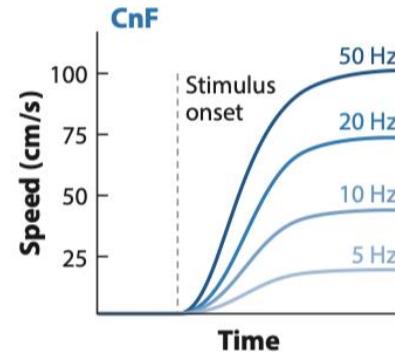
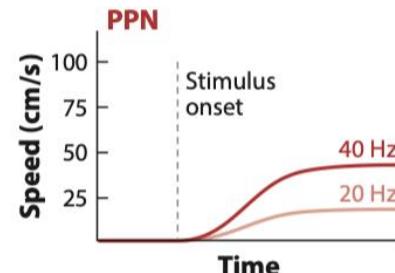
b The vertebrate control scheme for locomotion



Cell types of the CnF and PPN



b Vglut2 ChR2 stimulation



Synchronous (high-speed) gaits

Bound

Alternating (low-speed) gaits

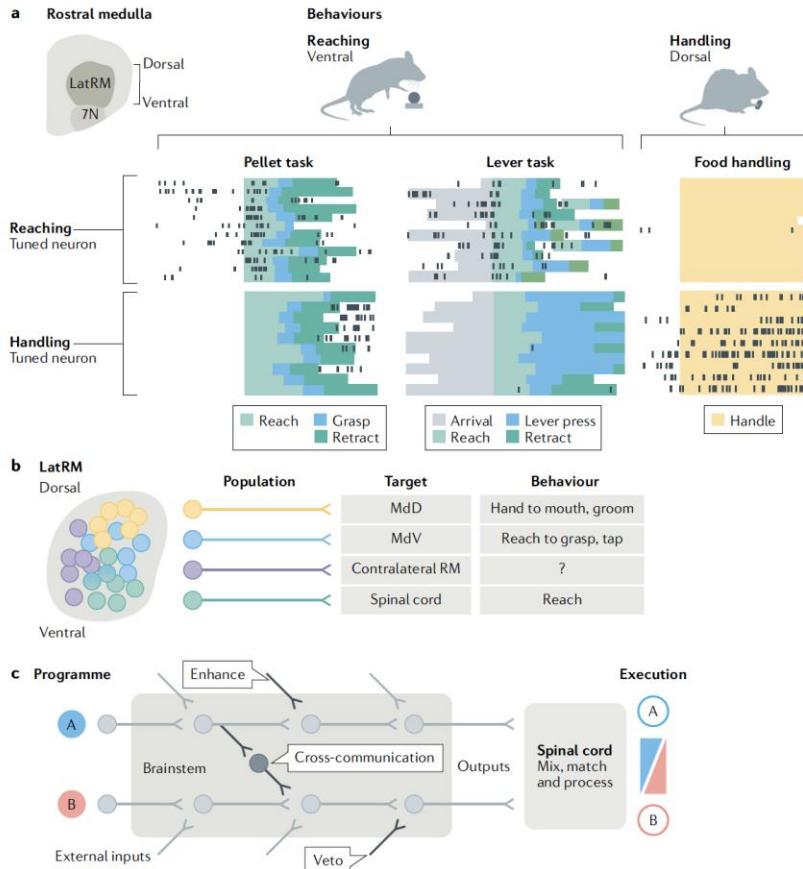
Trot

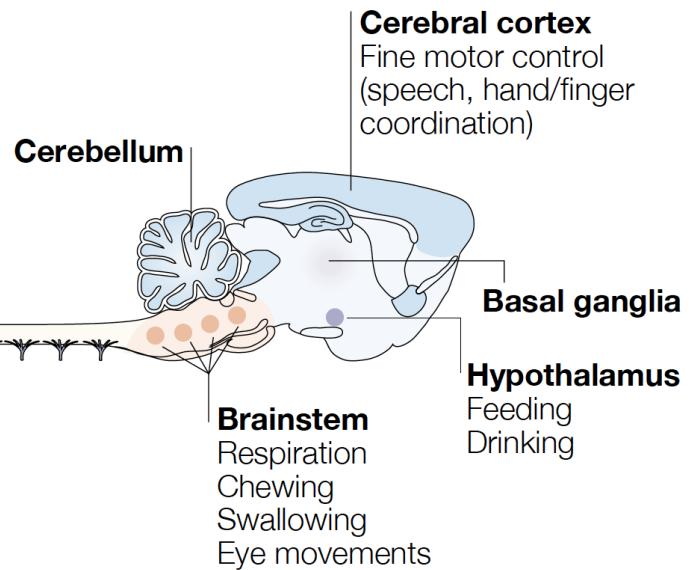
Alternating (low-speed) gaits

Trot

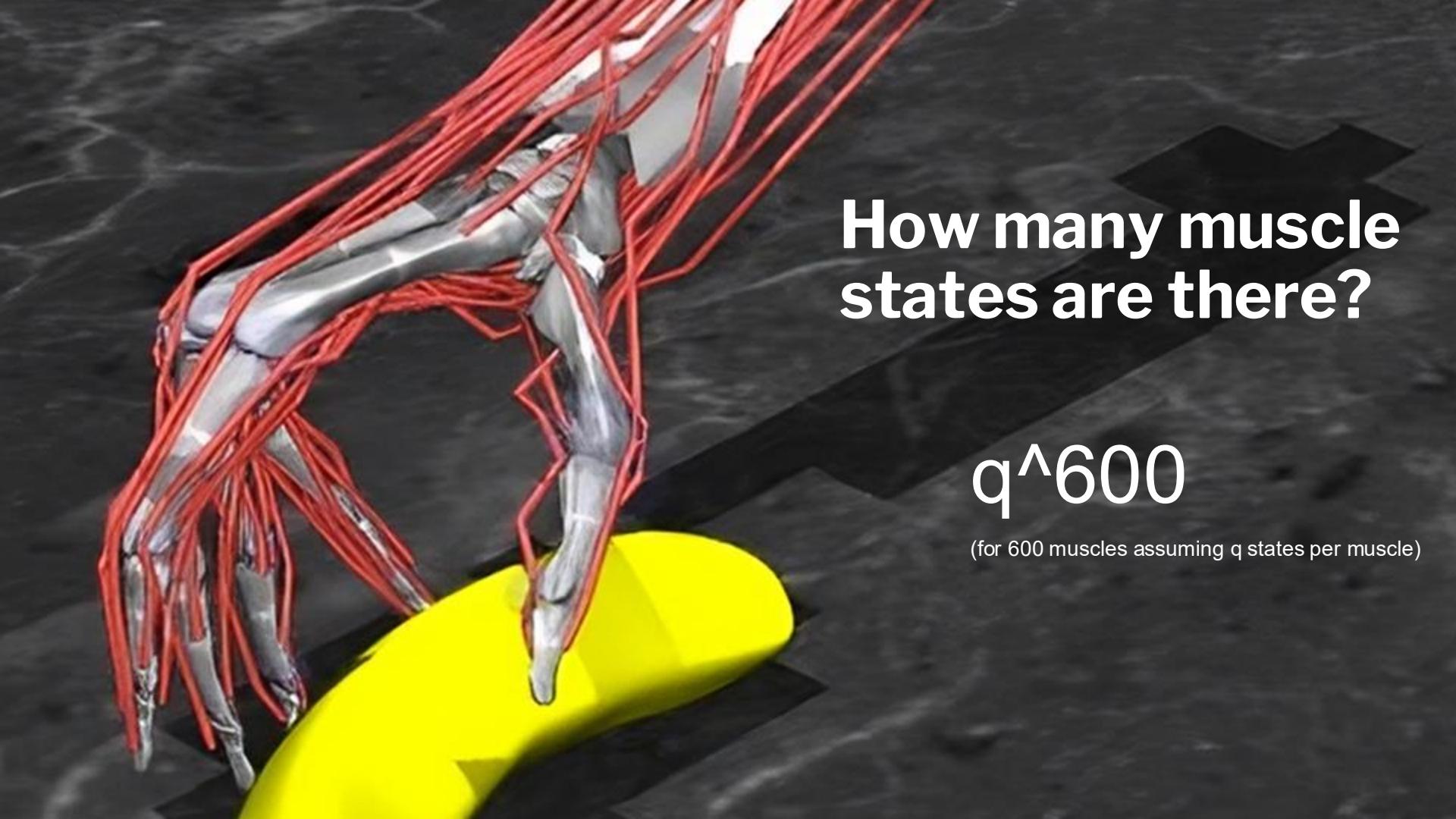
■ MLR, mesencephalic locomotor region; PPN, pedunculopontine nucleus; RFL, right forelimb; RHL, right hindlimb.

Brain stem circuits to control reaching & handling





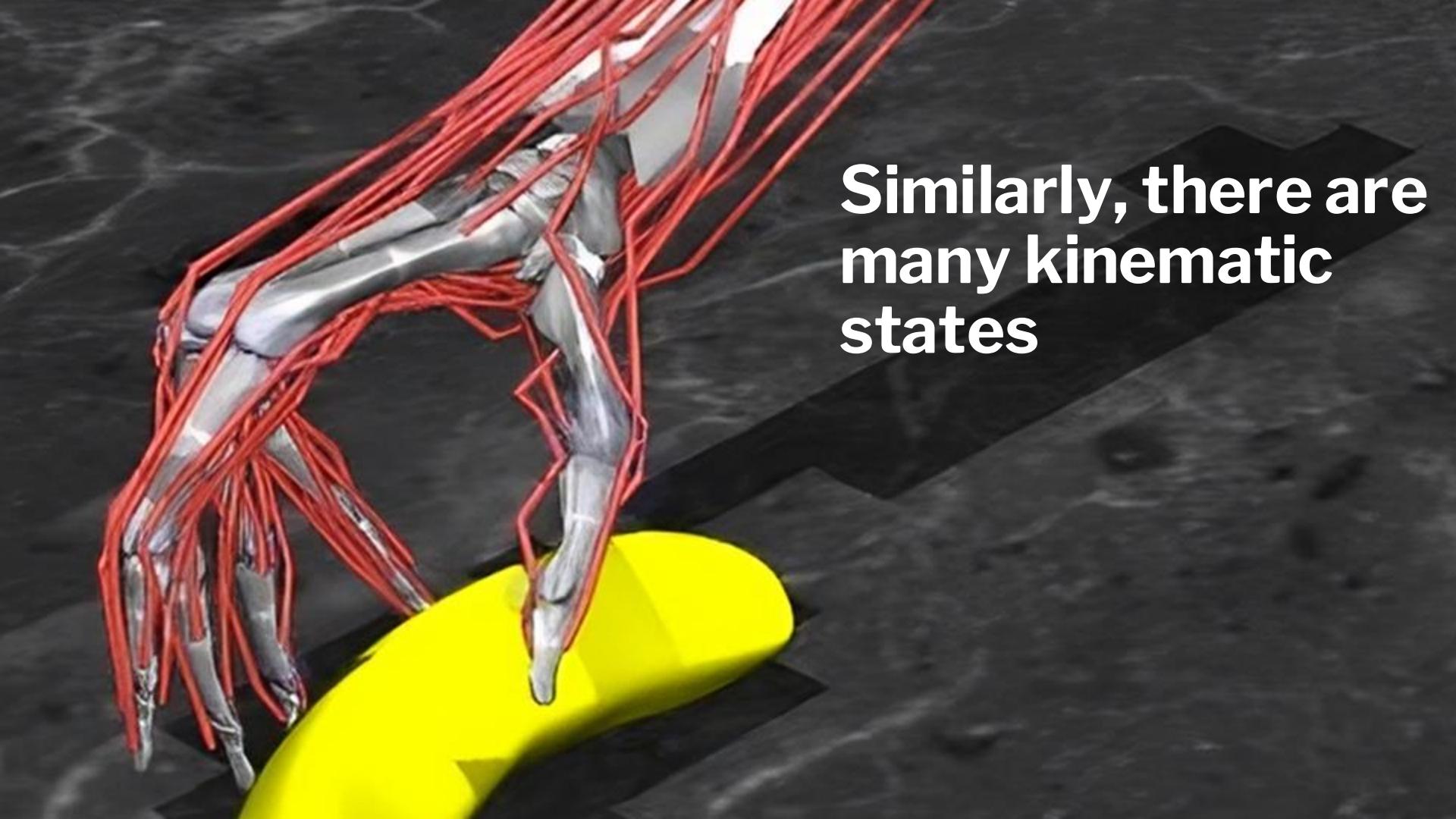
How are the many degrees of freedom tamed?



How many muscle
states are there?

q^600

(for 600 muscles assuming q states per muscle)

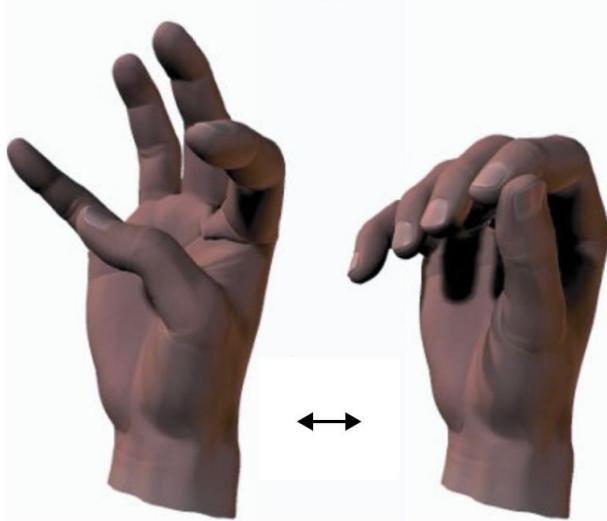
A 3D rendering of a robotic hand with red tendons and a yellow object it is grasping.

Similarly, there are
many kinematic
states

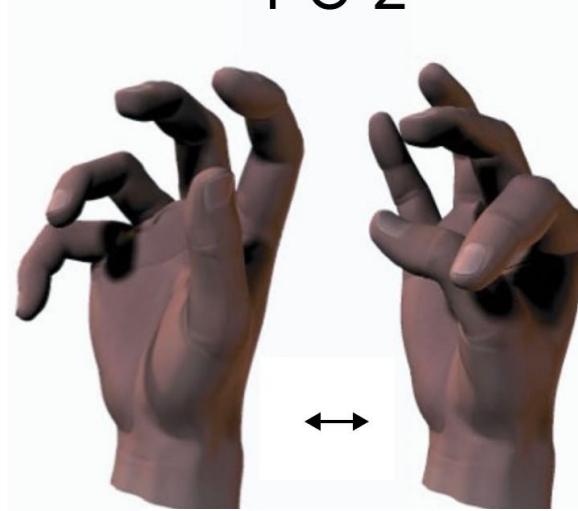
Boading balls: an example skill

How do humans control the hand?

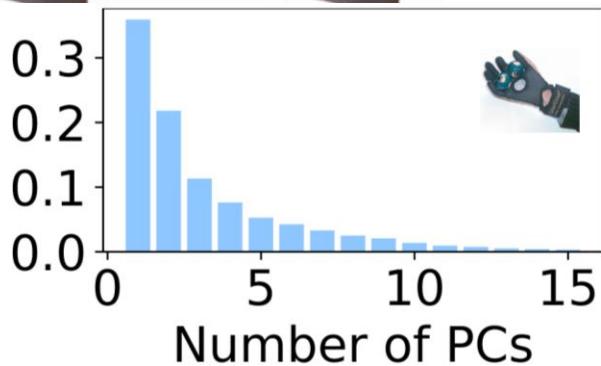
PC 1



PC 2



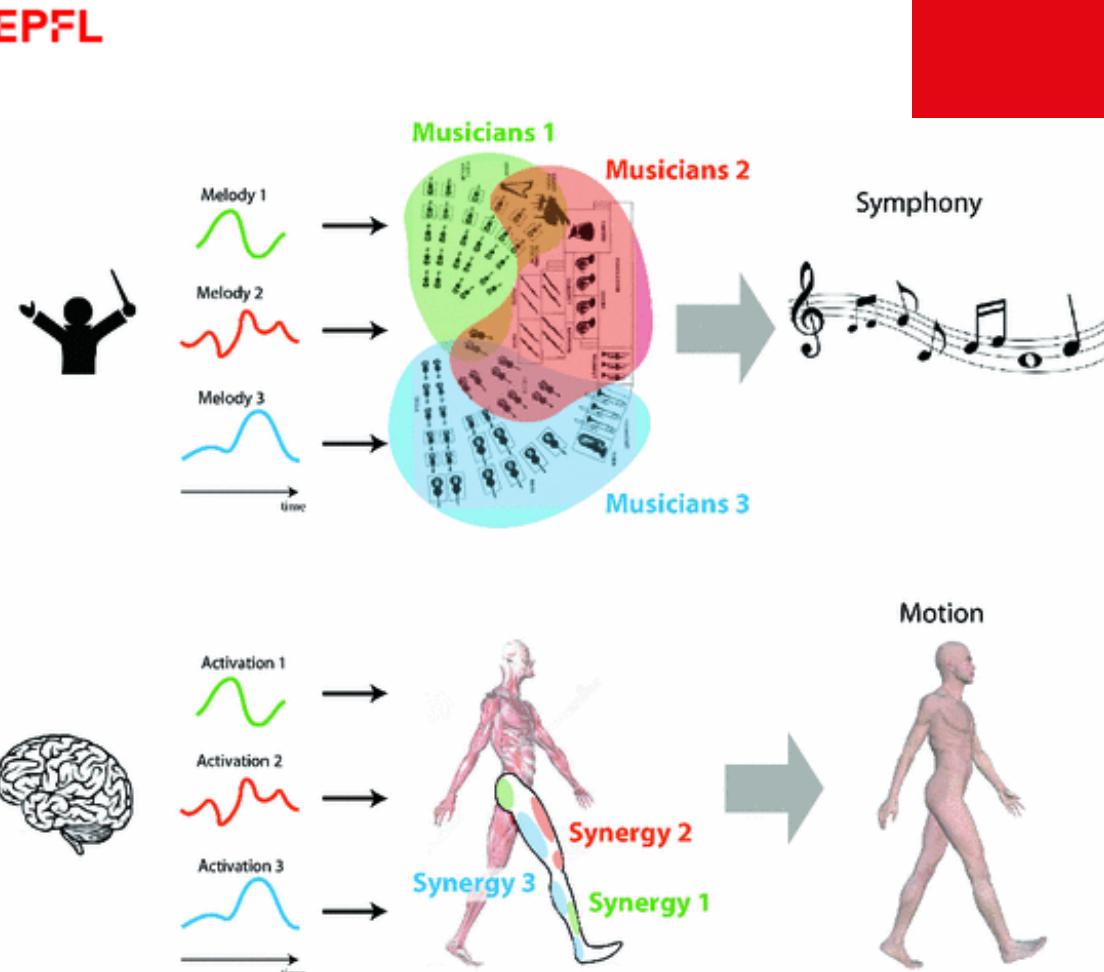
Human



Classic result: Bernstein, Bizzi, D'Avella, ...

- Todorov, & Ghahramani,
Annual International Conference of the IEEE Engineering in Medicine and Biology 2004

Muscle synergies as principle for motor control



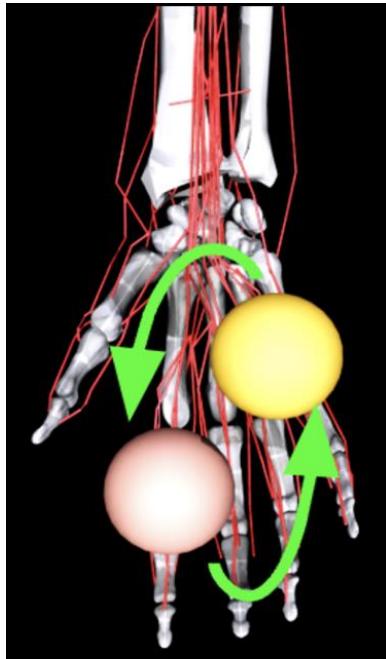
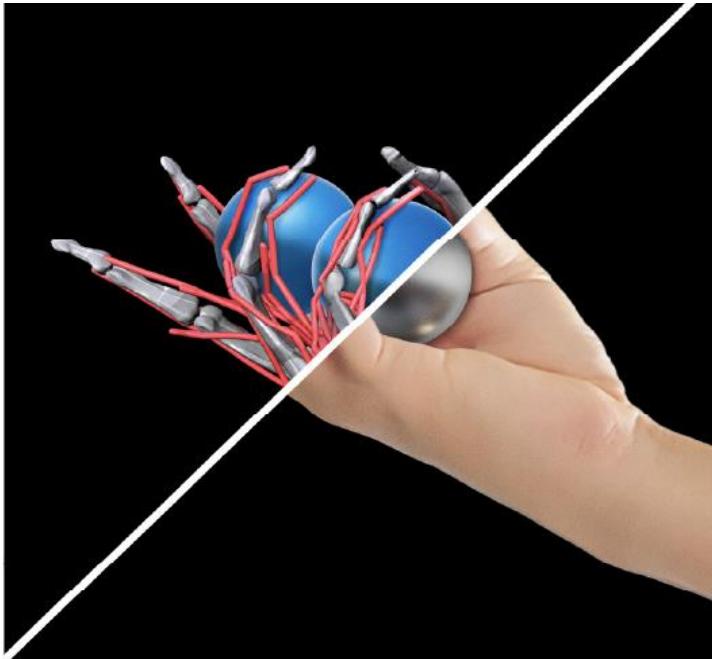
Integration of feedback? From (open-loop) pattern generation to control theory

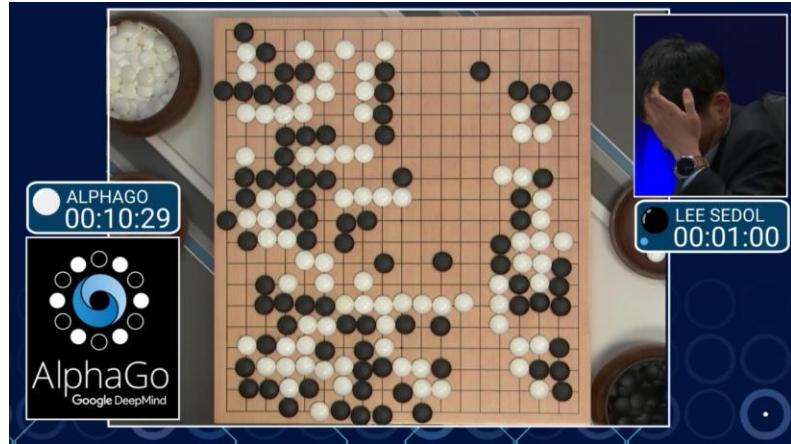
-

Note: Feedback is also present in
spinal cord/brain stem examples!

MyoChallenge: Baoding Balls

Inaugural NeurIPS Challenge 2022





SCIENCE ROBOTICS | RESEARCH ARTICLE

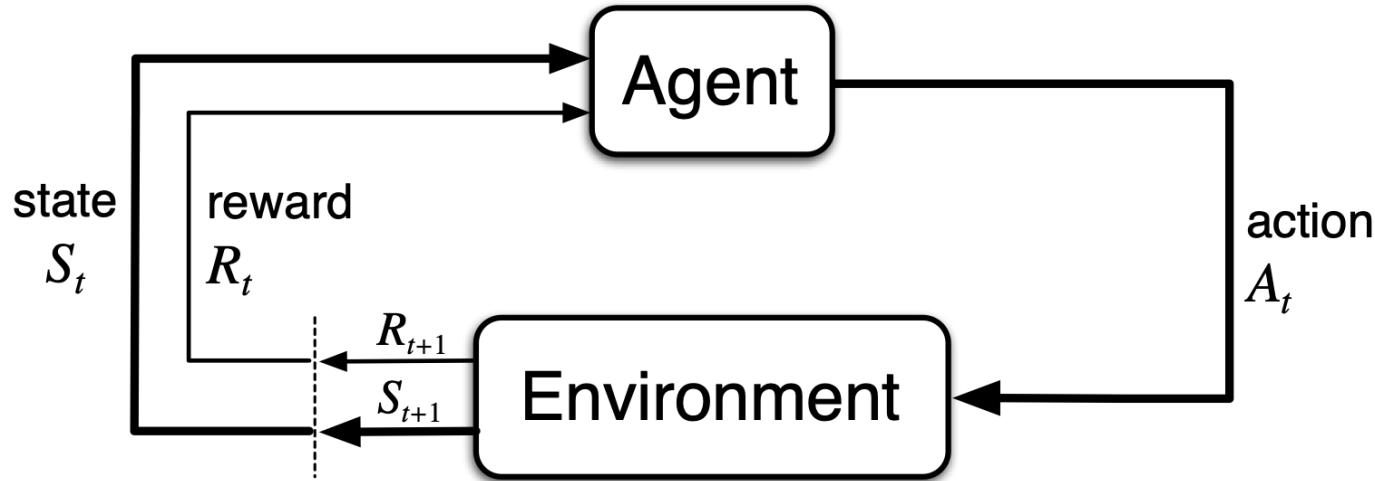
ANIMAL ROBOTS

Learning quadrupedal locomotion over challenging terrain

Joonho Lee^{1*}, Jemin Hwangbo^{1,2}, Lorenz Wellhausen¹, Vladlen Koltun³, Marco Hutter¹

Recent Successes in Reinforcement Learning (RL)

Reinforcement learning is a natural framework for skill learning

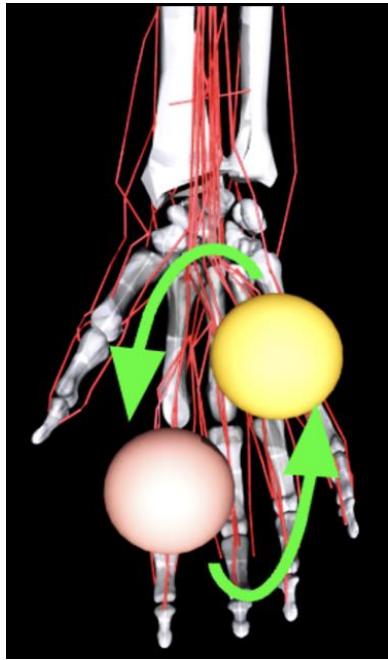
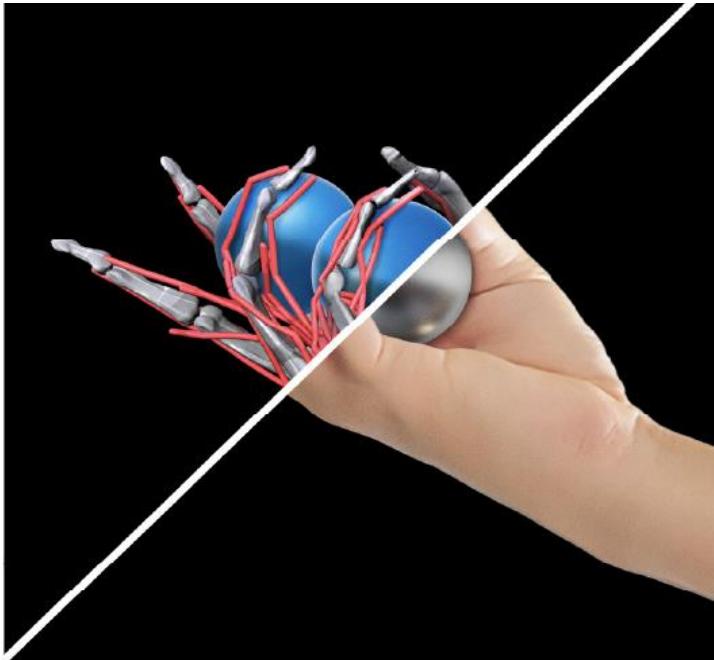


$$J(\theta) = v_{\pi_\theta}(s_0) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R_t \mid S_0 = s_0 \right]$$

MyoChallenge: Baoding Balls

$q^{\wedge}39$

Inaugural NeurIPS Challenge 2022

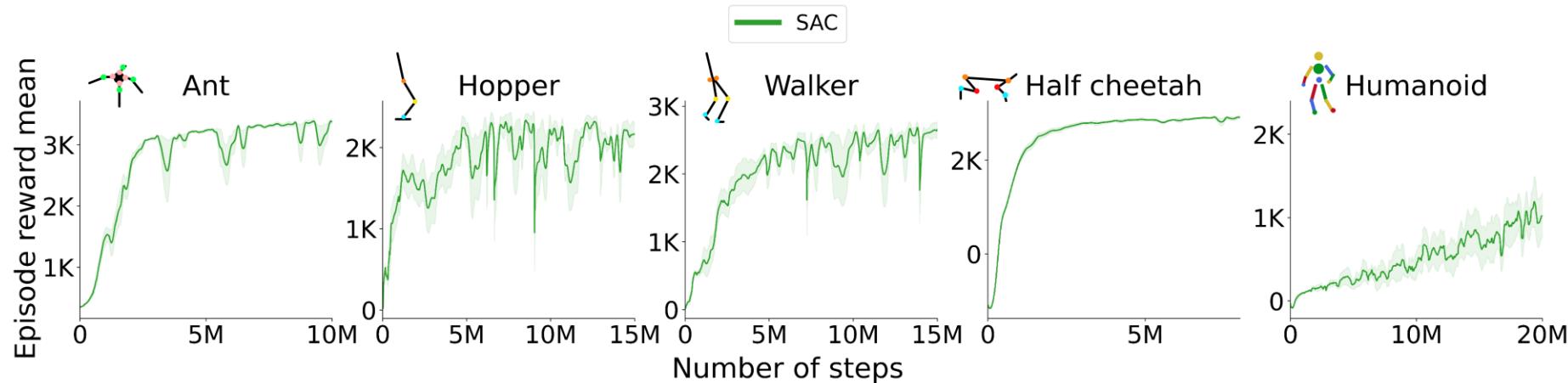
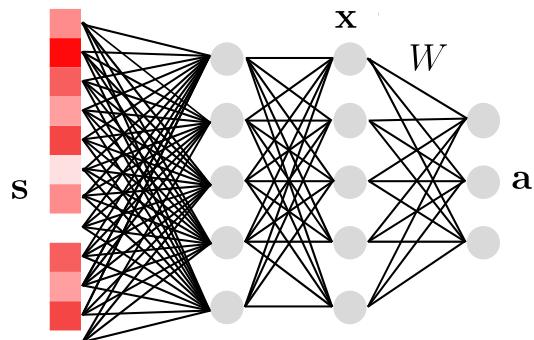


SOTA RL:

Phase 1	Phase 2
41%	0%

Better exploration?

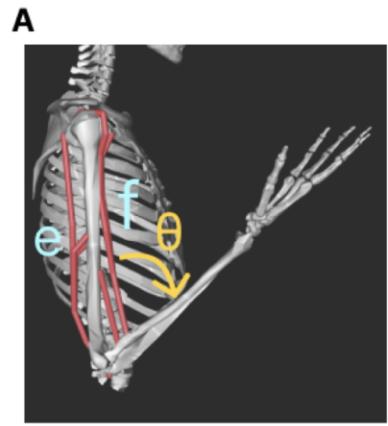
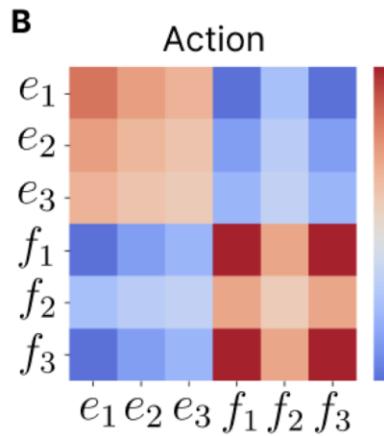
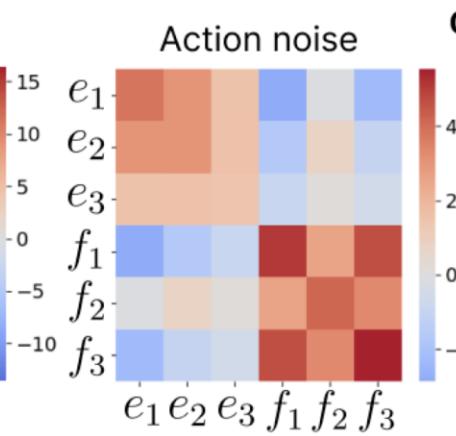
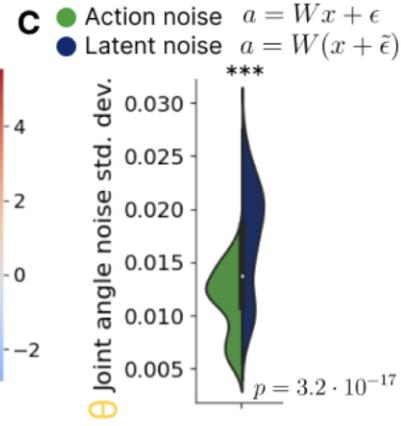
Learning sensorimotor skills



Default $\mathbf{a} = \mathbf{W}\mathbf{x} + \epsilon$

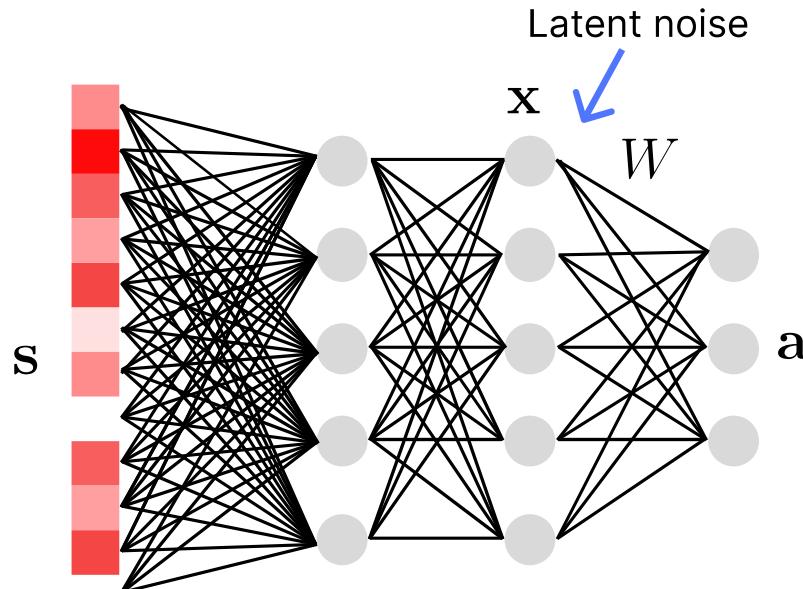
Isotropic exploratory noise

Basic intuition for better exploration



Latent time-correlated exploration

LATTICE - LATent TIme-Correlated Exploration



Perturbation matrices

N_a	P_a	$(P_a)_{i,j} \sim \mathcal{N}(0, (S_a)_{i,j})$
N_x	P_x	$(P_x)_{i,j} \sim \mathcal{N}(0, (S_x)_{i,j})$

LATTICE $a = (W + P_a + WP_x)x$

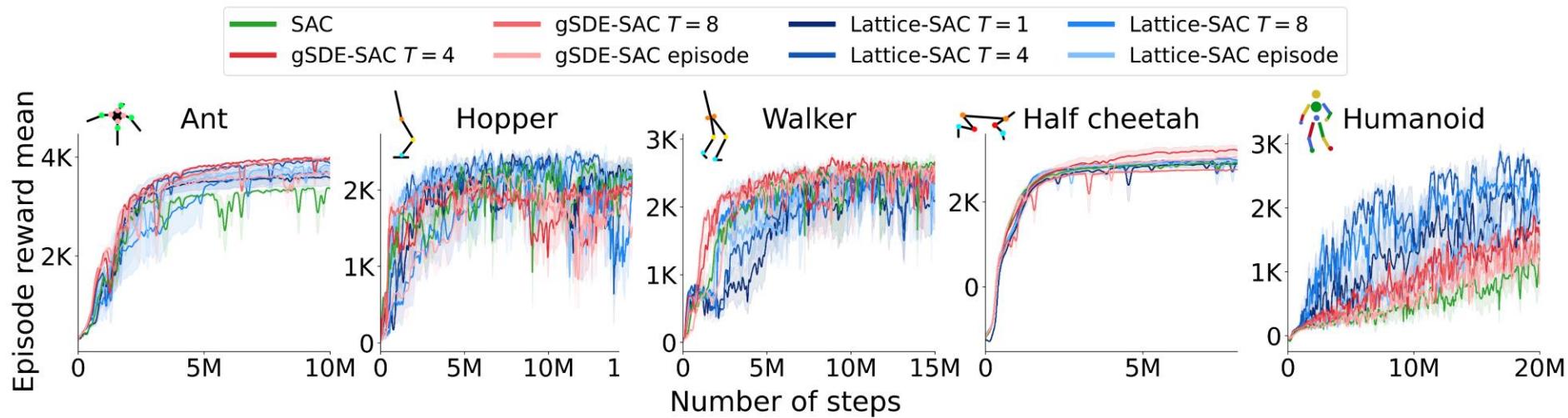
gSDE $a = (W + P_a)x$

Default $a = Wx + \epsilon$

Time

Time + Action

Benchmarking learning to locomote



LATTICE $\mathbf{a} = (W + P_{\mathbf{a}} + WP_{\mathbf{x}})\mathbf{x}$

gSDE $\mathbf{a} = (W + P_{\mathbf{a}})\mathbf{x}$

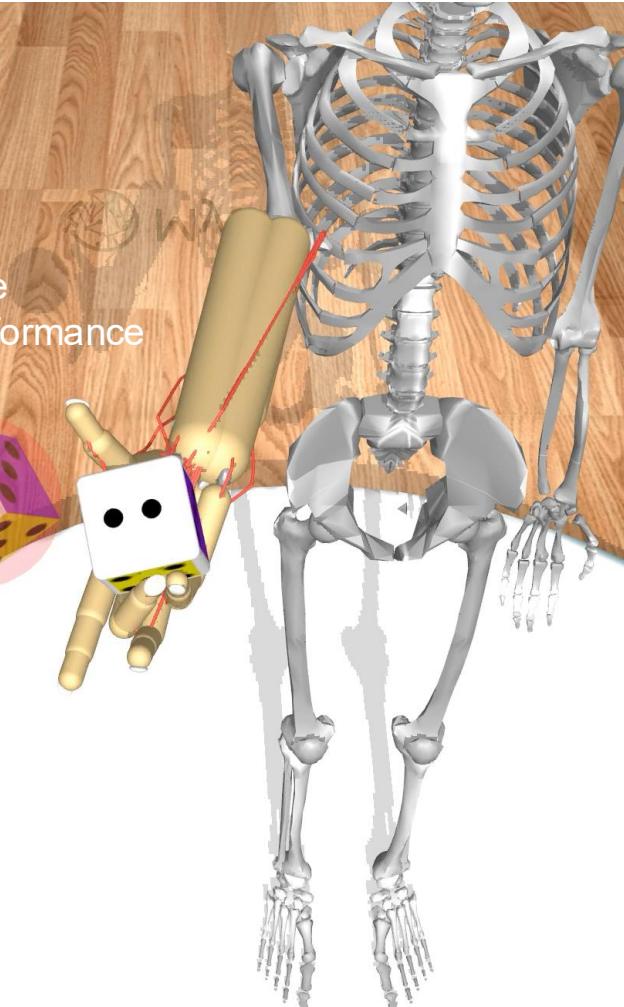
Default $\mathbf{a} = W\mathbf{x} + \epsilon$

Time + Action

Time

Run speed = 1.000 x real time	[S]lower, [F]aster
Ren[d]er every frame	On
Switch camera (#cams = 6)	[Tab] (camera ID = -1)
[C]ontact forces	On
Referenc[e] frames	On
Transp[er]ent	Off
Display [M]ocap bodies	On
Stop	[Space]
Advance simulation by one step	[right arrow]
[H]ide Menu	
Record [V]ideo (Off)	
Cap[t]ure frame	
Start [i]pdb	
Toggle geomgroup visibility	0-4

Early Lattice
training performance



39D action space

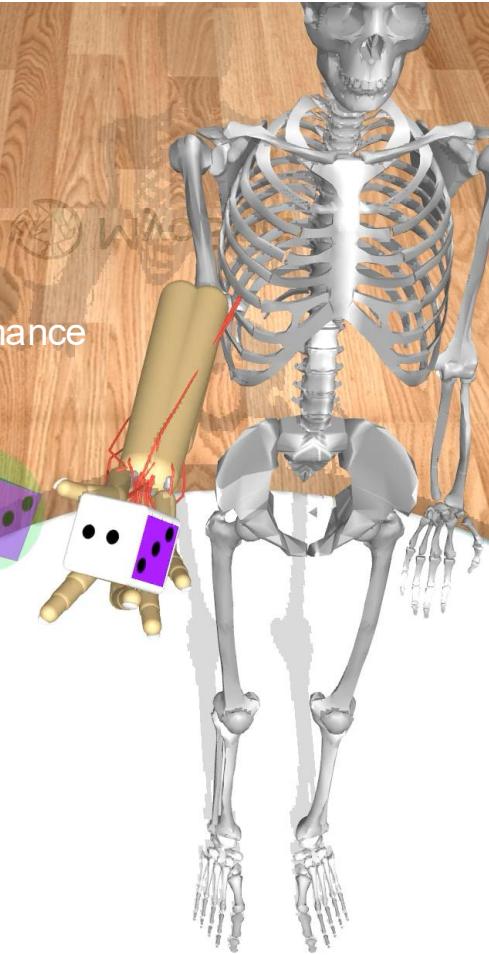
Reorient task
In MyoSuite/Mujoco

FPS	299
Solver iterations	2

Step	390
timestep	0.00200
n_substeps	1

Run speed = 1.000 x real time	[S]lower, [F]aster
Ren[d]er every frame	On
Switch camera (#cams = 6)	[Tab] (camera ID = -1)
[C]ontact forces	On
Referenc[e] frames	On
T[r]ansparent	Off
Display [M]ocap bodies	On
Stop	[Space]
Advance simulation by one step	[right arrow]
[H]ide Menu	
Record [V]ideo (Off)	
Cap[t]ure frame	
Start [i]pdb	
Toggle geomgroup visibility	0-4

Late Lattice
training performance



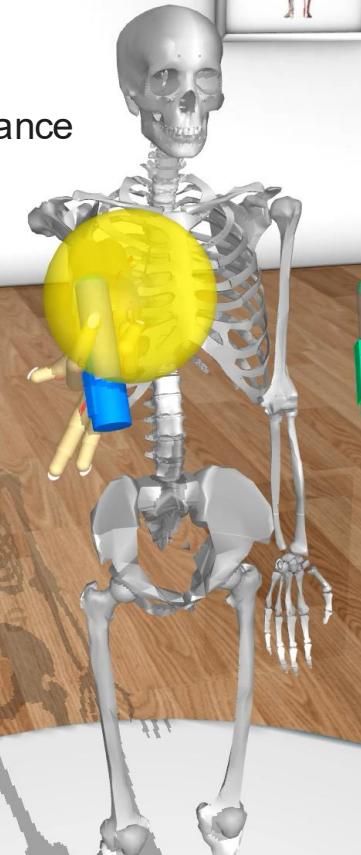
Reorient task
In MyoSuite/Mujoco

FPS	267
Solver iterations	2

Step	530
timestep	0.00200
n_substeps	1



Late Lattice
training performance



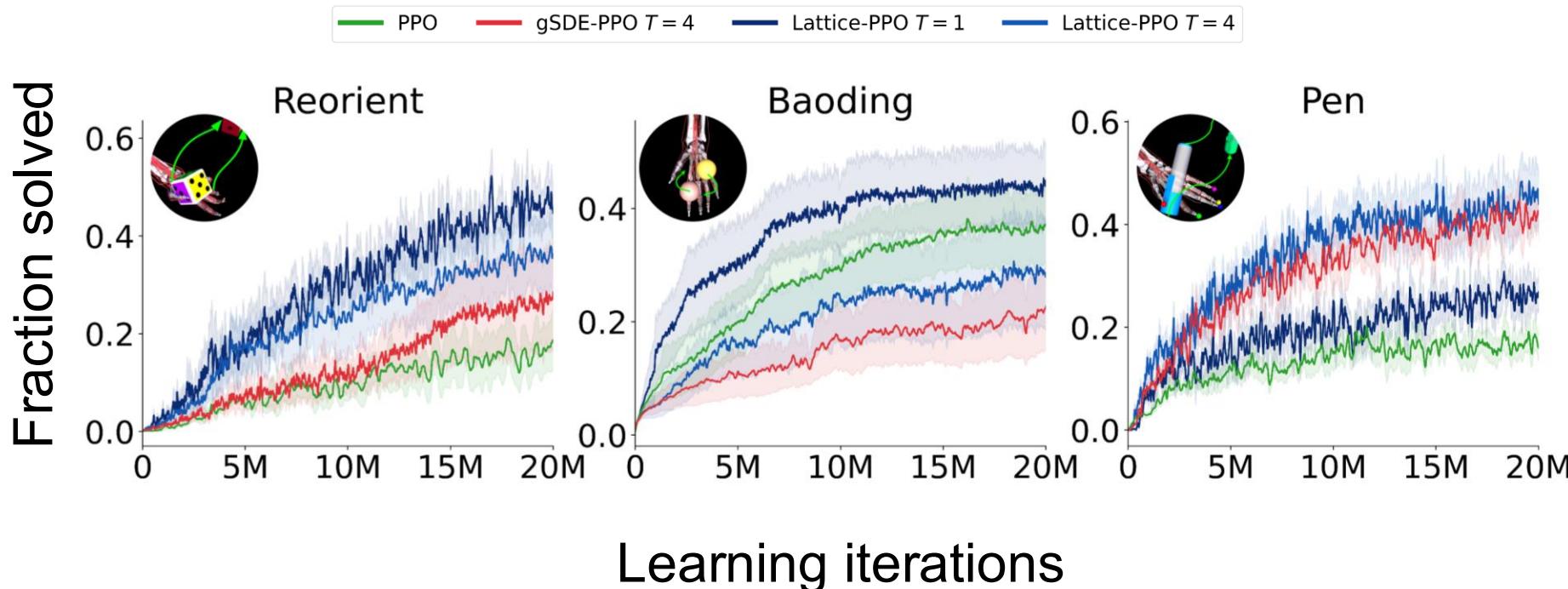
Pen task
In MyoSuite/Mujoco

FPS 288

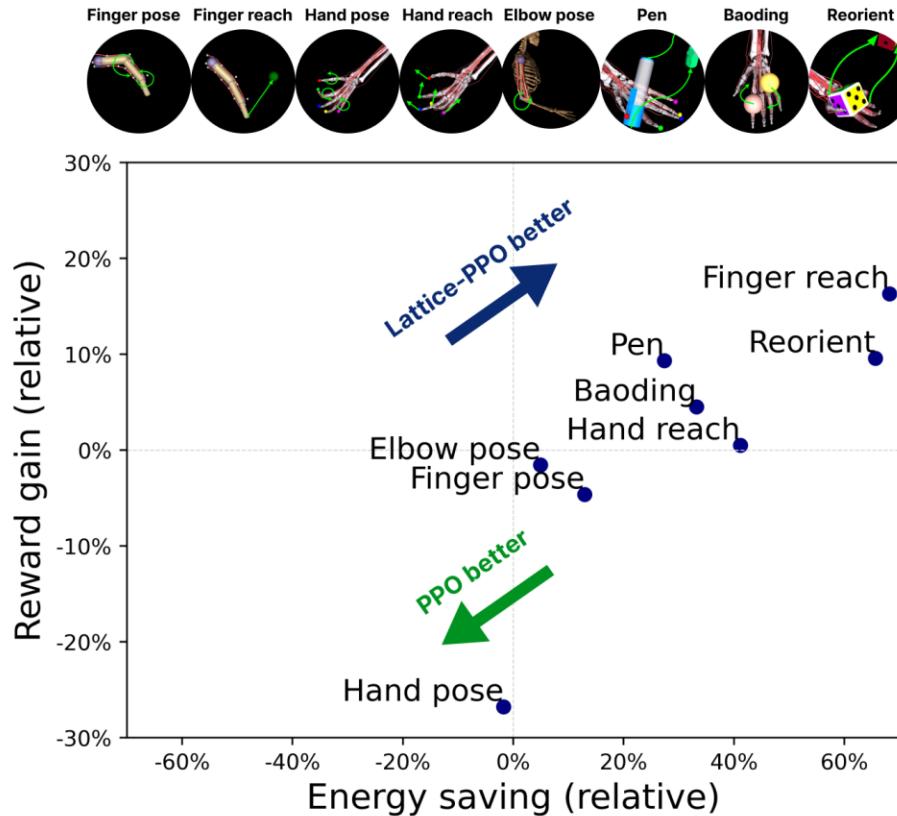
Solver iterations 3

Step	235
timestep	0.00200
n_substeps	1

Object manipulation learning curves

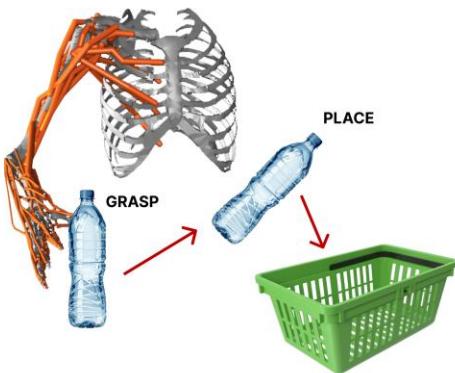


Lattice learns more energy efficient solutions



Can we model complex behavior using high-dimensional musculoskeletal body?

Winning solution – Lattice Team:



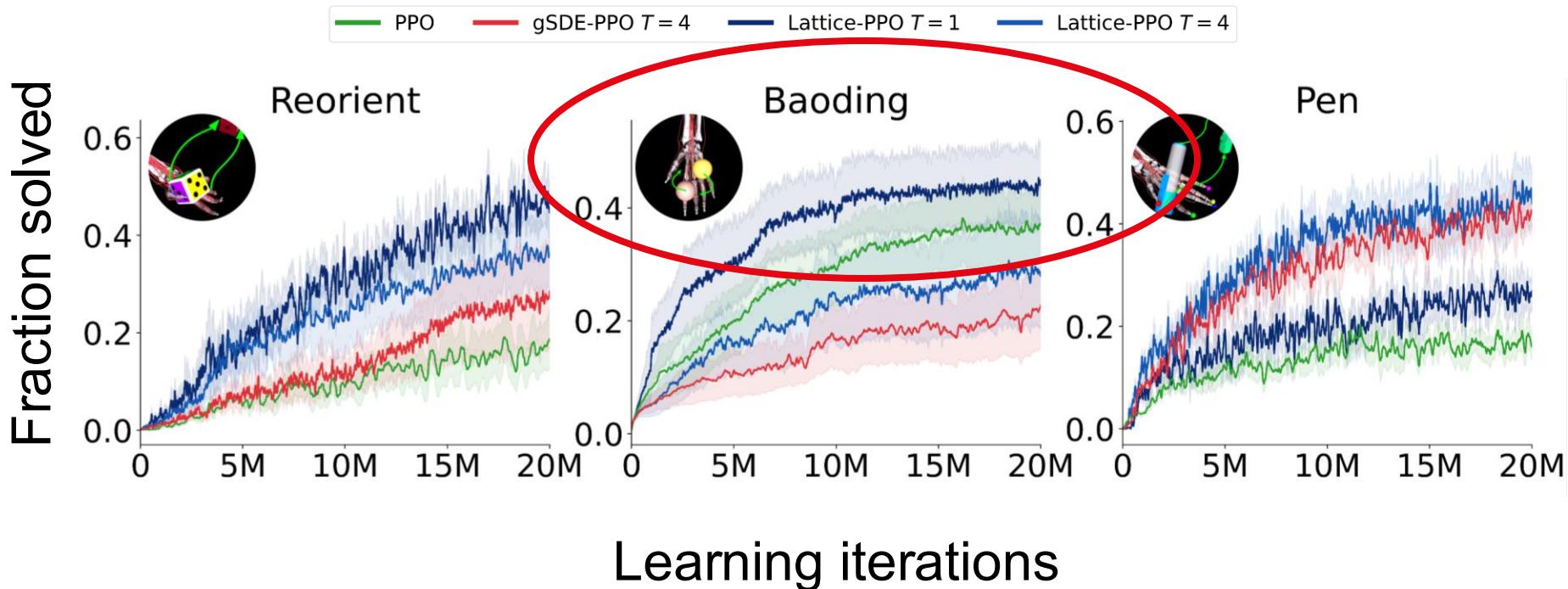
Phase 2			
Rank	Team	Score	Effort
1	Lattice	0.34343	0.05220
2	GaitNet	0.30303	0.05506
3	CarbonSiliconAI	0.20202	0.07620
4	NUABILITY	0.14141	0.07492
5	NUR-TEAM	0.10101	0.04470

Chiappa A. S., Marin Vargas A., Huang A., & Mathis A., NeurIPS (2023)

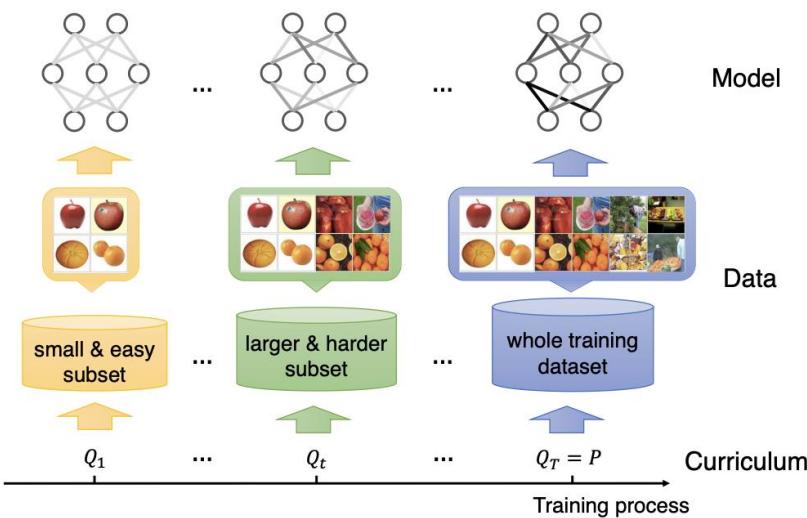
Caggiano V., Durandau G., Wang C., Kwang Tan C., Schumacher P., Wang H., Chiappa A., Marin Vargas A., Mathis A., Park J., Won J., Park G., Shin B., Kim M., Koo S., Yang Z., Dang W., Cai H., Song J., Song S., Sartori M., Kumar V., ArXiv (2024)

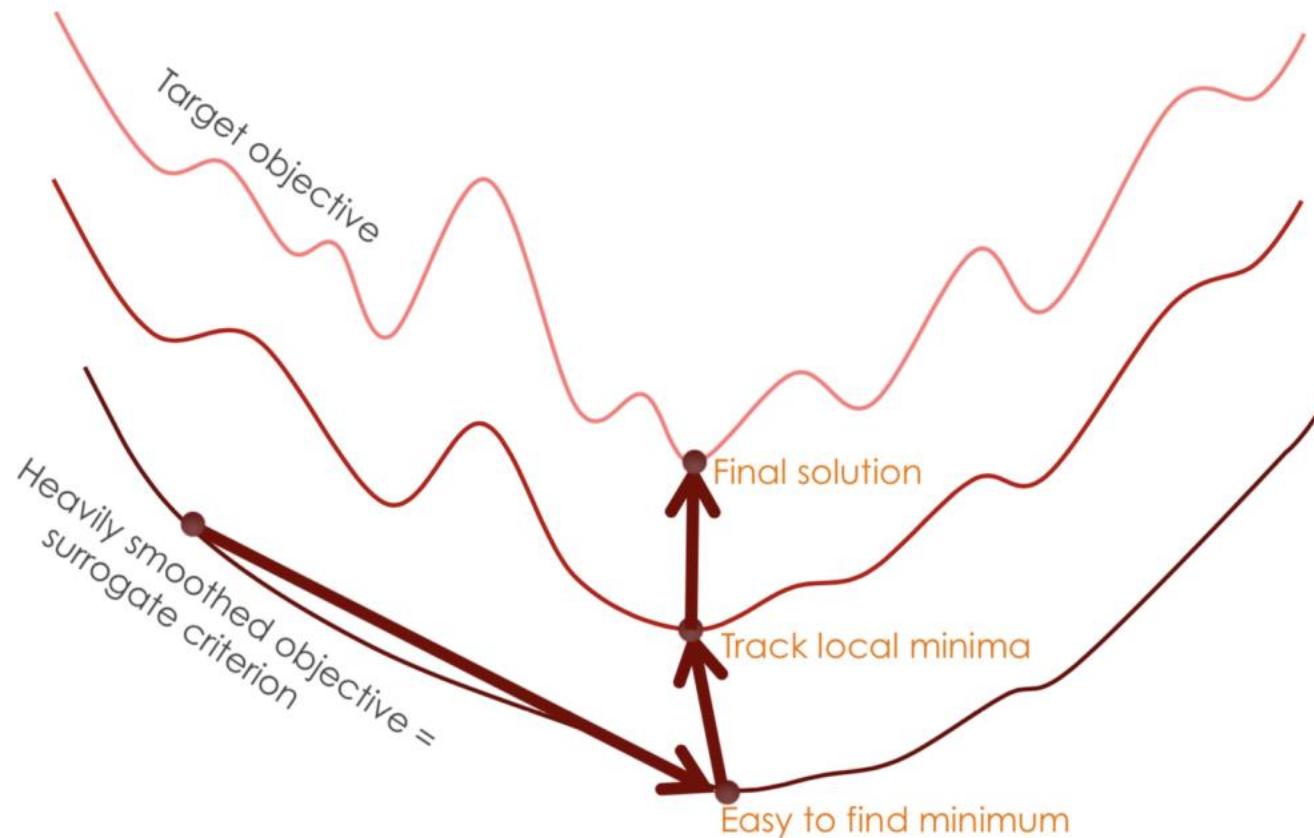
Despite Lattice, the performance is not so high...

How can one reach a higher fraction?



Curriculum learning

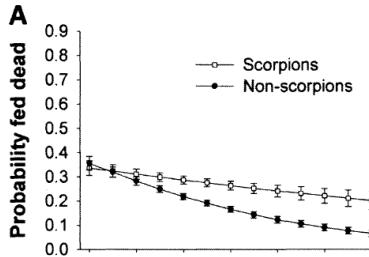
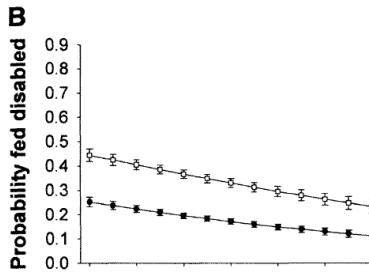
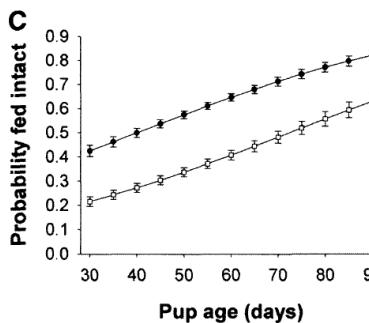




Curriculum learning in biology

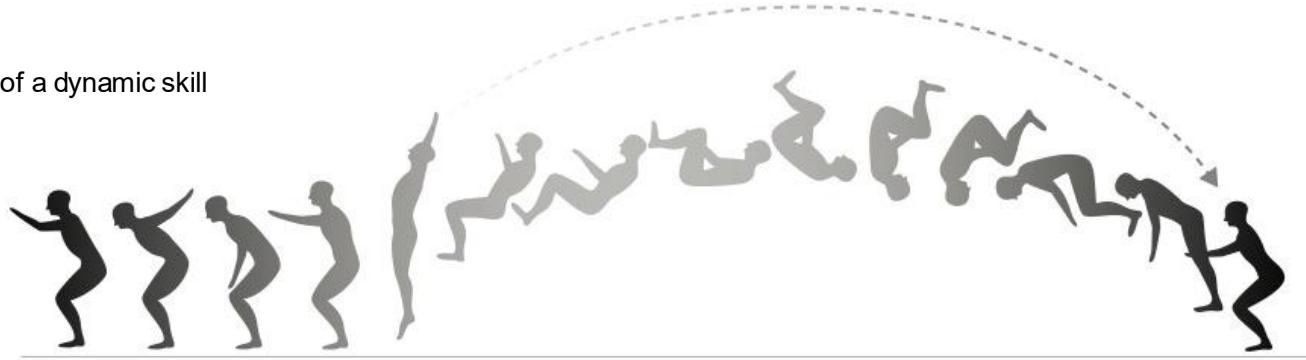
Teaching in Wild Meerkats

Alex Thornton* and Katherine McAuliffe



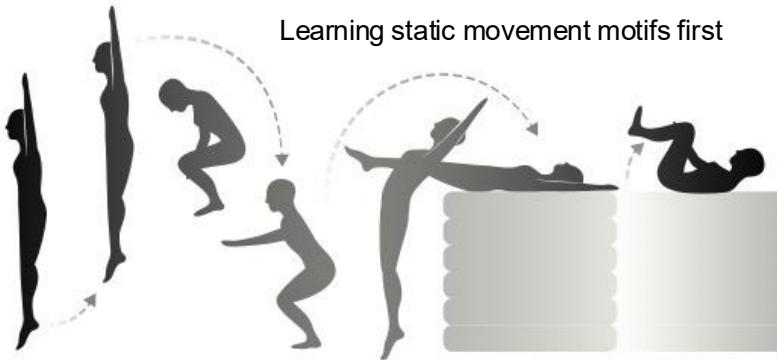
Inspiration from coaching: part-to-whole practice

States of a dynamic skill



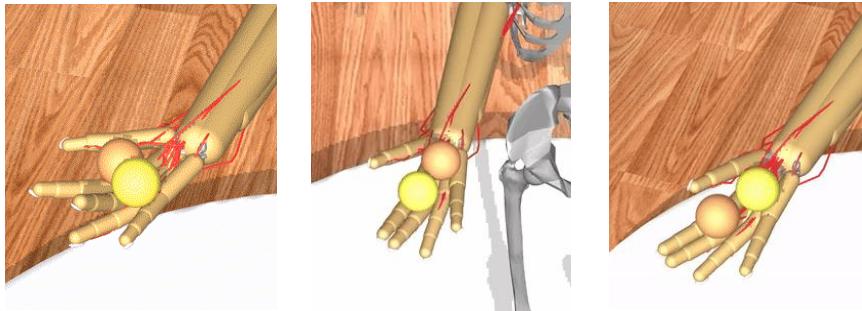
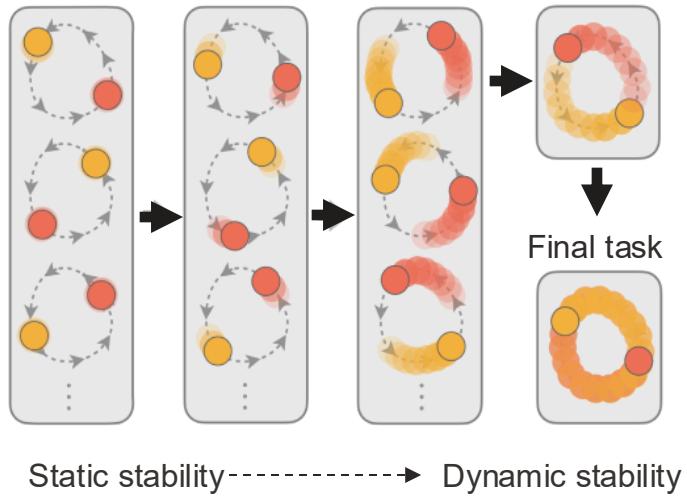
Learning static movement motifs first

Recommended strategy:



Curriculum learning

- Static to Dynamic Stability (SDS)
 - SDS creates stability at desired states *before* learning a policy that reaches them
 - A curriculum gradually transforms static stability into dynamic movement motifs



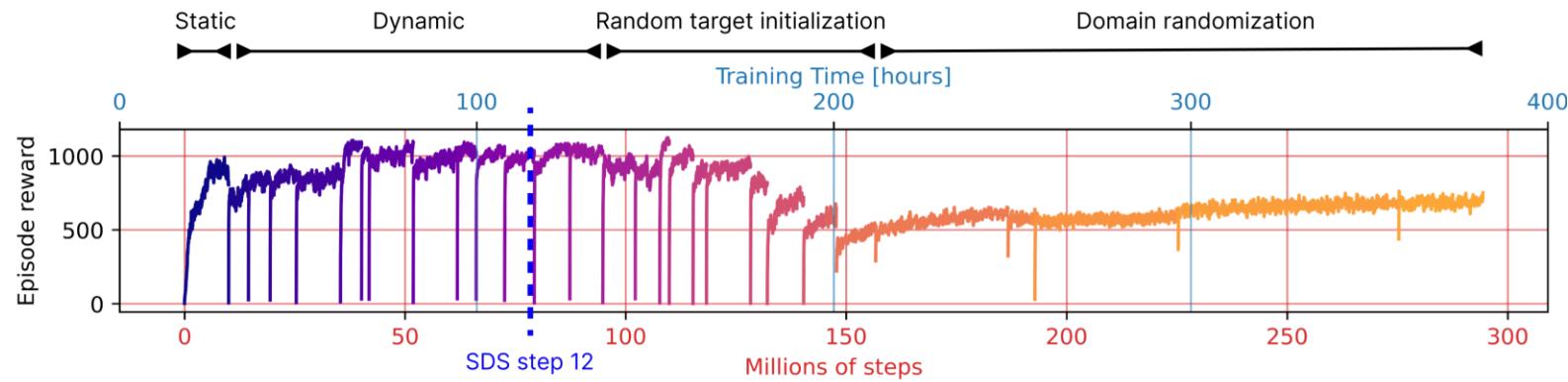
Learning curve for our policy

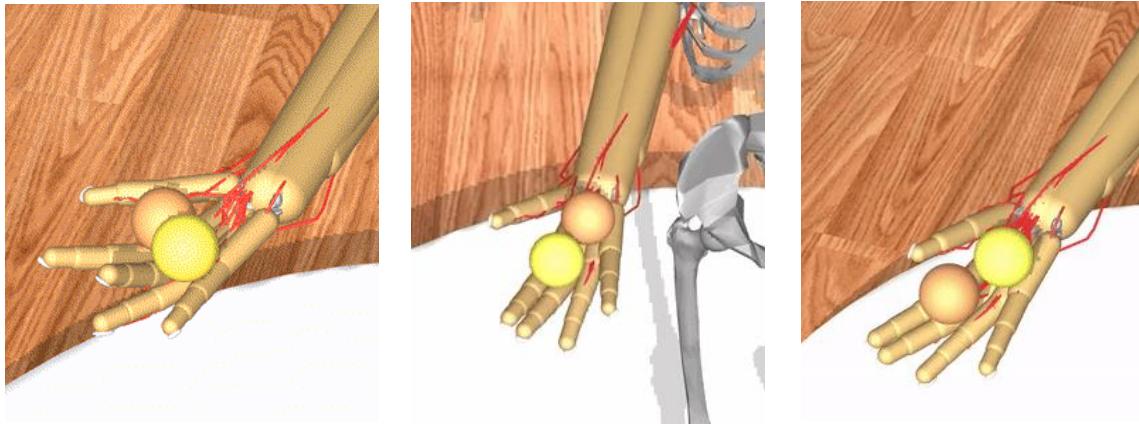
Sport science terminology:

Part to whole practice

Deliberate practice

ML terminology:

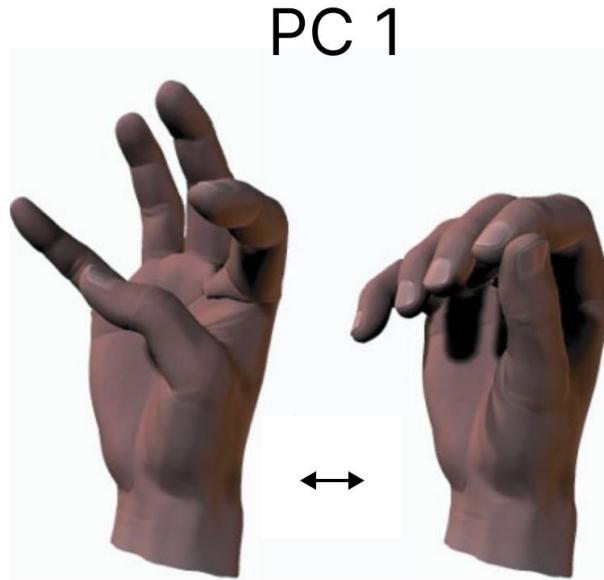
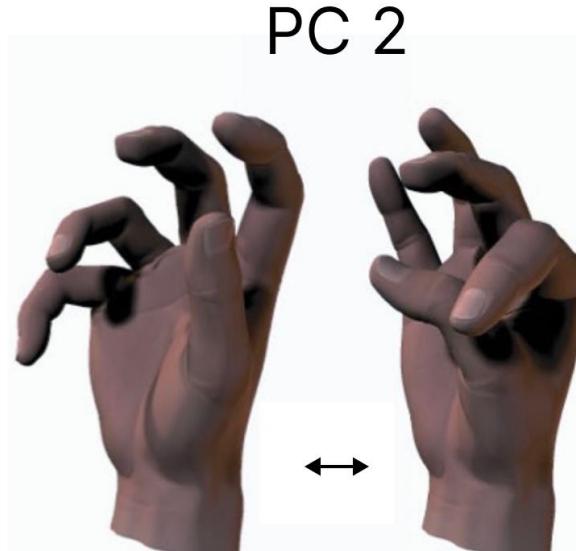




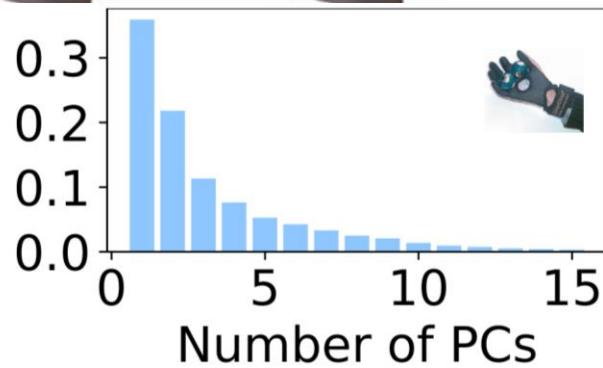
Curriculum	Phase 1	Phase 2
None	41%	0%
Location only	42%	4%
Speed only	45%	0%
SDS (ours)	100%	55%

Team	Performance
SDS (ours)	55%
AI4Muscles	41%
IARAI-JKU	15%
pkumarl	14%

How do humans achieve this task?



Human



SDS also discovers a low-dimensional control space

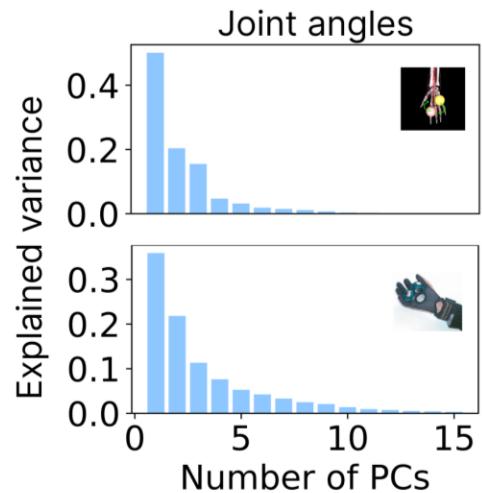


SDS

Human

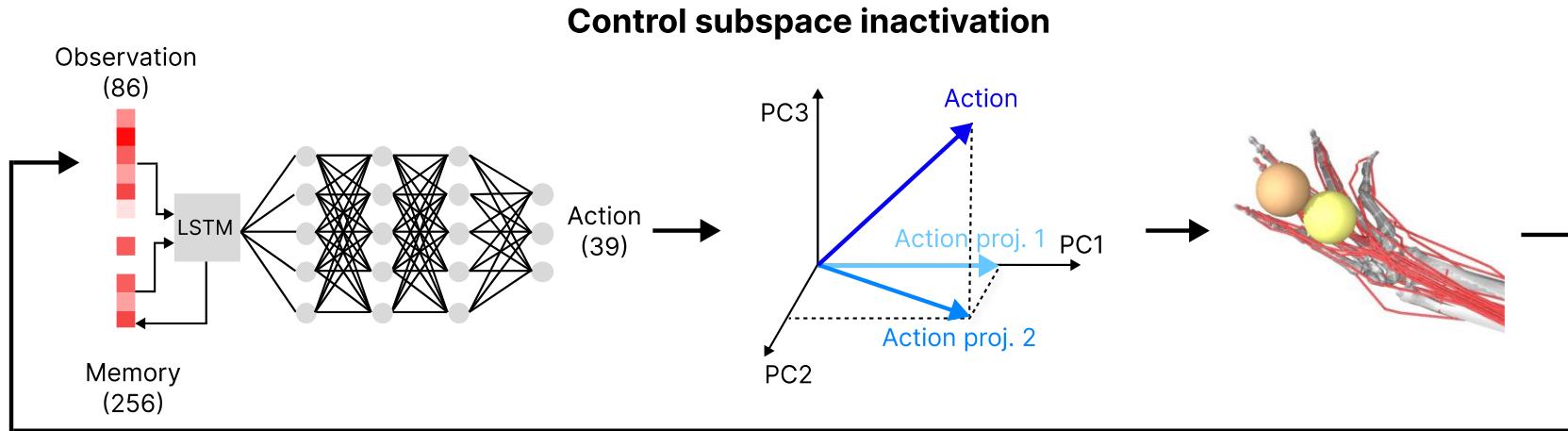
Position	
Baoding	4.5
Control	8
Muscle act.	
Baoding	12
Control	7

Muscle act.	
Baoding	12
Control	7

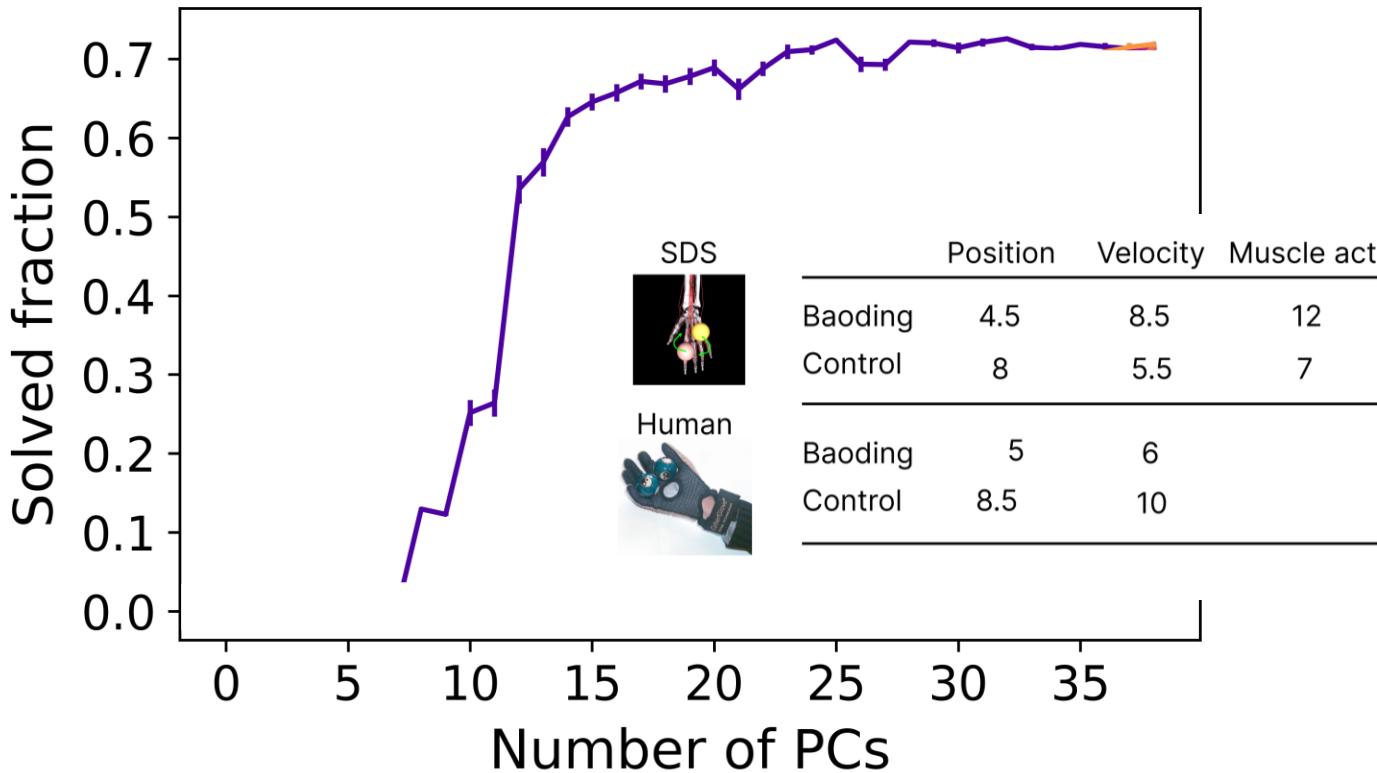


This notion of muscle/kinematic synergy is purely based on reconstruction error!

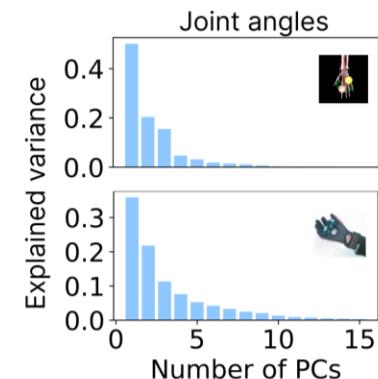
Physics engine allows causal experiments with “muscle synergies”



Signal reconstruction underestimates necessary DoF



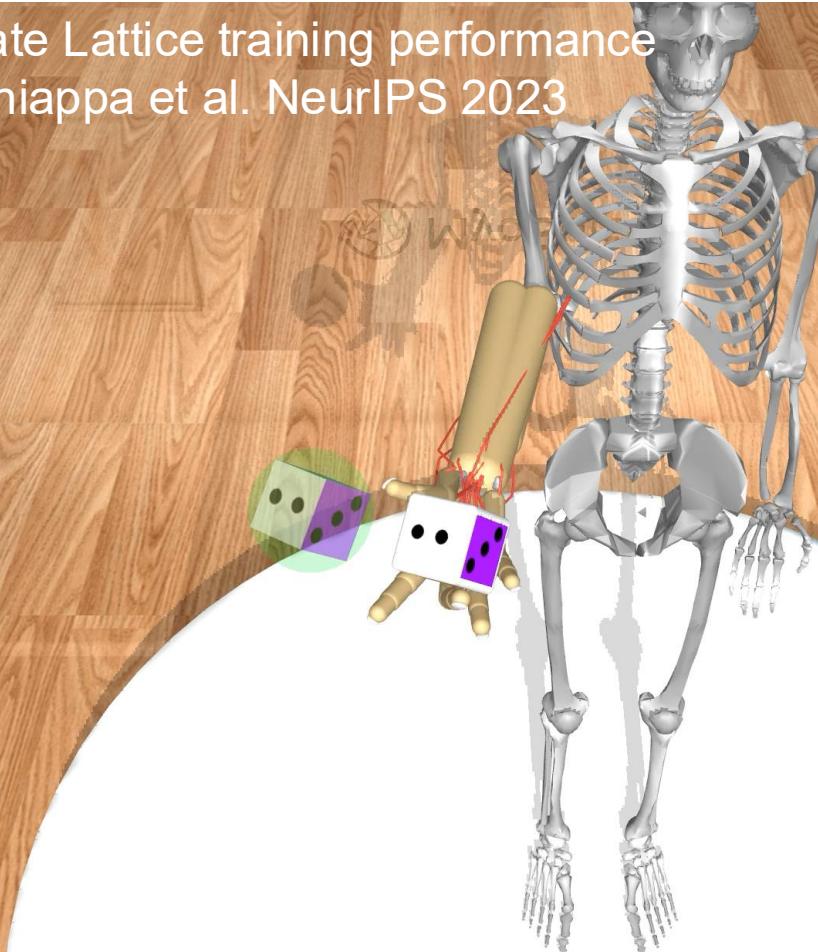
	Position	Velocity	Muscle act.
Baoding	4.5	8.5	12
Control	8	5.5	7
<hr/>			
Baoding	5	6	
Control	8.5	10	



Run speed = 1.000 x real time
Ren[d]er every frame
Switch camera (#cams = 6)
[C]ontact forces
Referenc[e] frames
T[r]ansparent
Display [M]ocap bodies
Stop [Space]
Advance simulation by one step [right arrow]
[H]ide Menu
Record [V]ideo (Off)
Cap[t]ure frame
Start [i]pdb
Toggle geomgroup visibility 0-4

Late Lattice training performance Chiappa et al. NeurIPS 2023

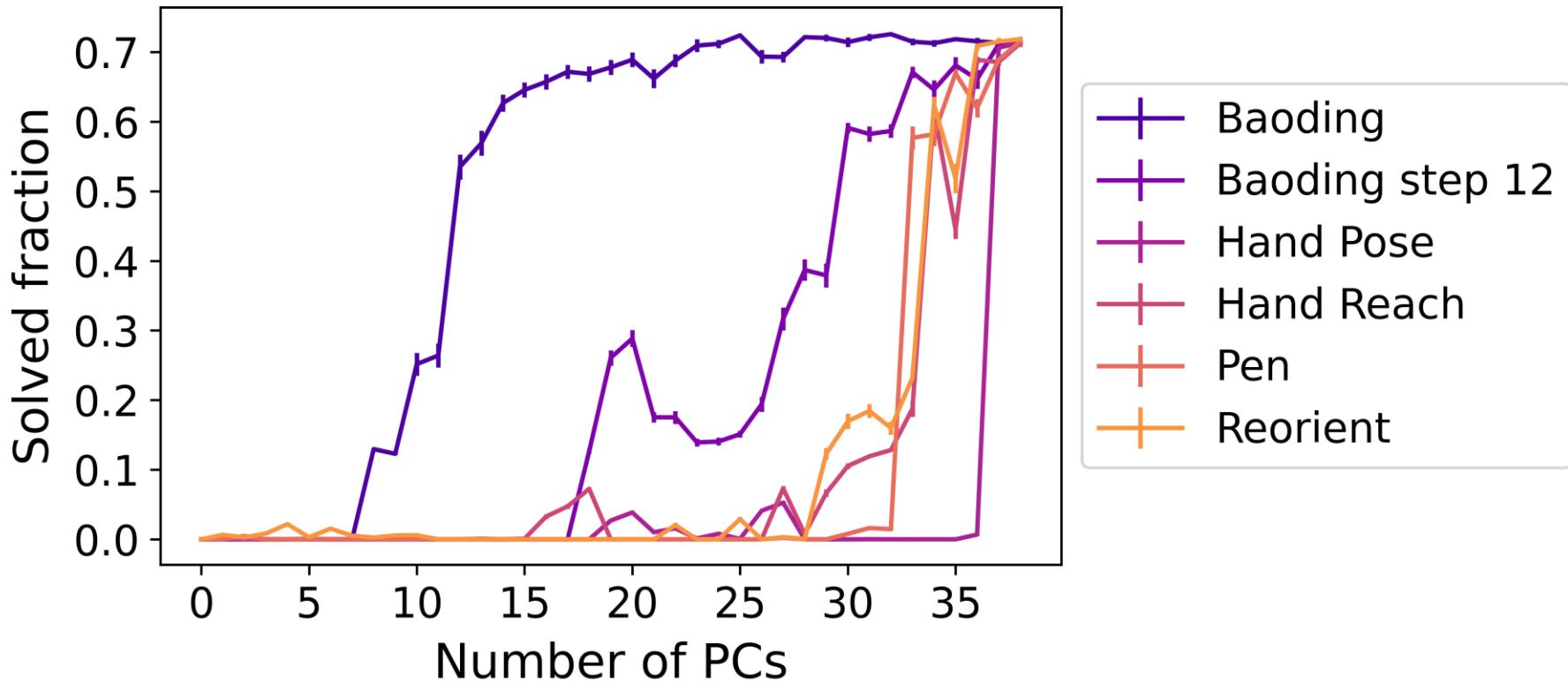
Reorient task
In MyoSuite/Mujoco



FPS 267
Solver iterations 2

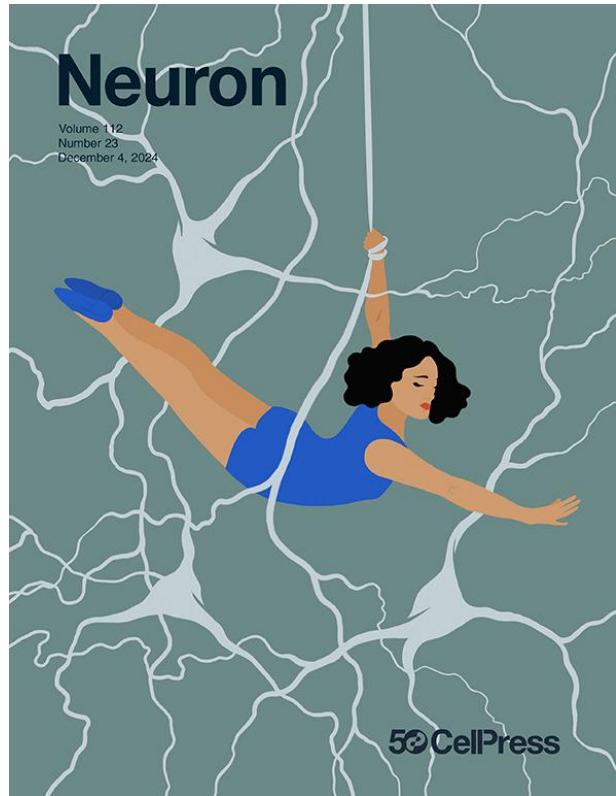
Step 530
timestep 0.00200
n_substeps 1

Control spaces are highly task-dependent & transfer poorly



Intermediate take-home messages

- ❑ Muscle synergies have been proposed as a key principle for motor control
- ❑ Yet, low-dimensional nature might be **underestimated with existing techniques!**
- ❑ For the hand -- learned muscle synergies are highly task-specific, and thus generalize poorly
- ❑ This suggests that low-dimensional control is an emergent property (of the task/biomechanics/distributed circuits) rather than the mechanism of control (not a simplifying strategy)
- ❑ Neural networks are ideal for taming complex biomechanics



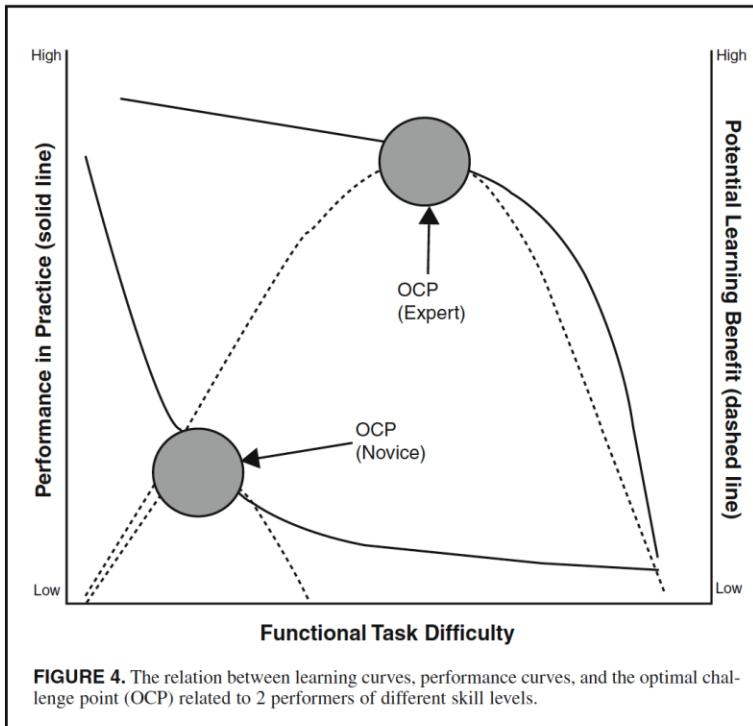
Curriculum learning in human motor control?

Part-to-whole practice, deliberate
practice & challenge point
learning

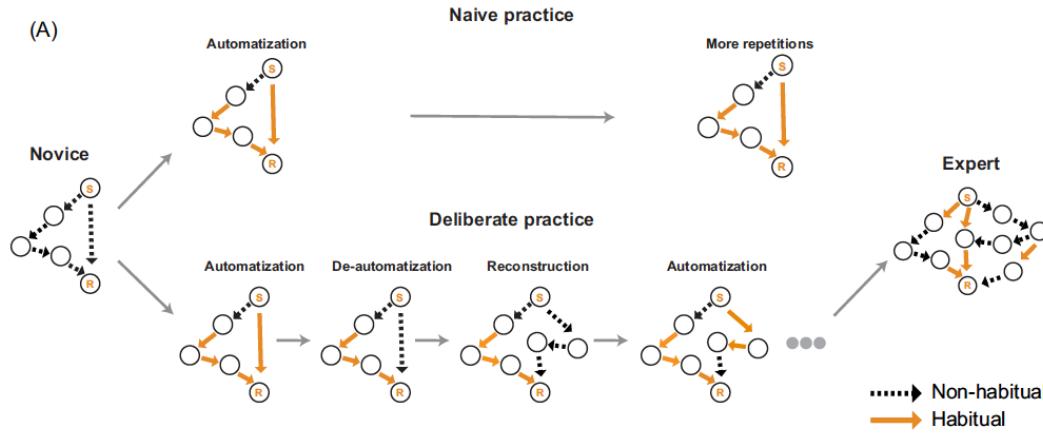
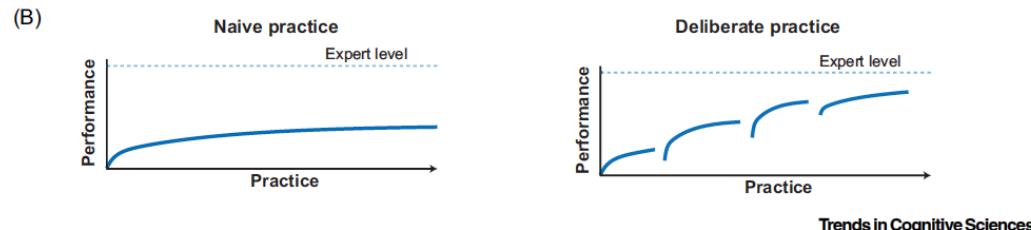
Part-to-whole practice

- Video suggested by Prof. Nicola Hodges

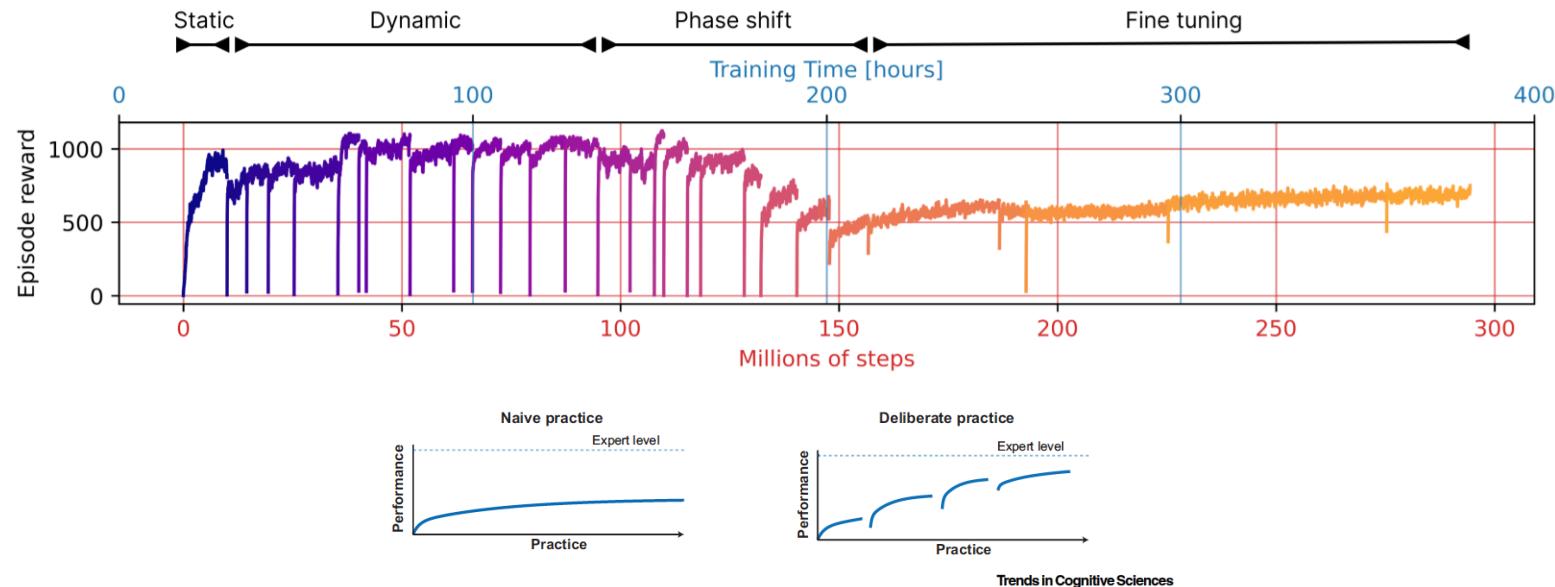
Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning



Deliberate practice



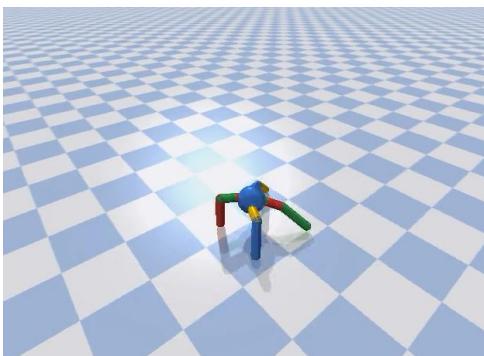
Deliberate practice & the SDS learning curve



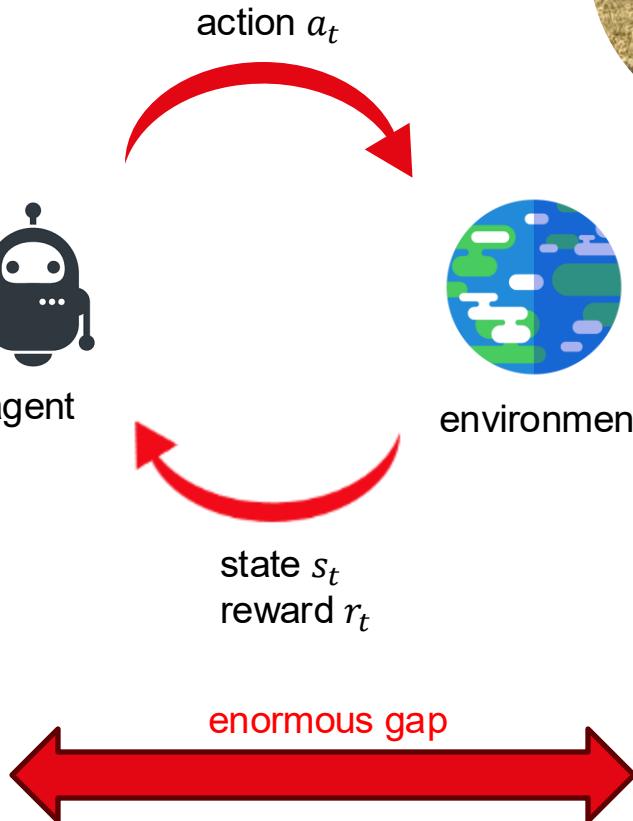
Reinforcement learning

Chess: 10^{120}

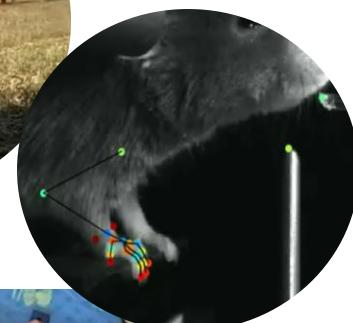
Go: 3^{361}



agent



environment



M. Mathis Lab

<https://www.youtube.com/watch?v=8vNxjwt2Aq>

<https://www.forbes.com/>

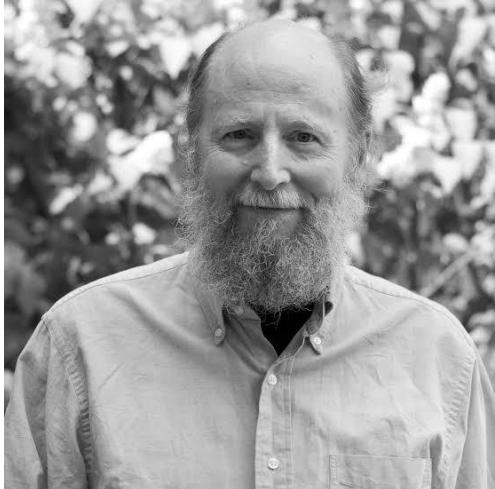
What is missing?

- Internal models
- Inductive biases (innate architecture)
- *Better exploration*
- Baked in reward functions (which we don't know...)
- Using language
- *Curriculum learning*
- *Deliberate practice*
-

While we do not know their contributions or even the necessity of either one of those claims, I will show preliminary evidence for each to give you an idea.

There is a lot of research to be done to close this gap & figure out what actually matters...

A counter point – the bitter lesson



Richard Sutton

“The bitter lesson is based on the historical observations that 1) AI researchers have often tried to build knowledge into their agents, 2) this always helps in the short term, and is personally satisfying to the researcher, but 3) in the long run it plateaus and even inhibits further progress, and 4) breakthrough progress eventually arrives by an opposing approach based on scaling computation by **search and **learning**. *The eventual success is tinged with bitterness, and often incompletely digested, because it is success over a favored, human-centric approach.*”**

<http://www.incompleteideas.net/Incldeas/BitterLesson.html>